

Hydrology Update Report Carruthers Creek Watershed

Carruthers Creek Flood Management & Analysis Municipal Class EA

Project No. W10-288

October 2011

Table of Contents

1.0	Intro	oduction1
	1.1.	Study Background1
	1.2.	Purpose4
	1.3.	Background Information4
2.0	Prev	rious Hydrology Model Review and Update5
	2.1.	Watershed Boundary5
	2.2.	Sub-catchment Layout6
	2.3.	Sub-catchment Delineation7
	2.4.	Time to Peak7
	2.5.	Sub-catchment Pervious Length and Slope10
	2.6.	Sub-catchment Impervious Length and Slope10
	2.7. 2.7.1	Curve Numbers10Soil and Land Use10
	2.8.	Initial Abstraction12
	2.9.	Channel Routing13
	2.10.	Reservoir Routing13
	2.11.	Calibration Storm Selection13
	2.12.	Aerial Reduction Factor14
	2.13.	Summary14
3.0	Mod	lel Calibration / Flow Comparison14
	3.1.	Storm Selection14
	3.2.	Base Flow Separation15
	3.3.	Distributed Rainfall Modeling Technique15
	3.4.	Antecedent Moisture Analysis18
	3.5.	Time to Peak19
	3.6.	Calibration to Stream Flow Data20
	3.7.	Model Validation21
	3.8.	Sources of Error24
	3.9.	Conclusions / Recommendations25
4.0	Desi	gn Storm Selection

5.0	2008 Calibrated Model Results	27					
6.0	Predevelopment Model						
	6.1. Land Use						
	6.2. Sub-catchment Delineation	20					
	6.3. Reservoir Routing						
	6.4. Summary						
	6.5. Peak Flow Results						
7.0	Future Scenarios						
	7.1. Overview	32					
	7.2. Approved Official Plan Future Condition						
	7.2.1. Land Use						
	7.2.2. Sub-catchment Delineation						
	7.2.3. Curve Numbers						
	7.2.4. Reservoir Routing						
	7.2.5. Summary						
	Peak Flow Results						
	7.3. Regional Official Plan Amendment 128						
	7.3.1. Land Use						
	7.3.2. Sub-catchment Delineation						
	7.3.3. Curve Numbers						
	7.3.4. Reservoir Routing						
	7.3.5. Summary						
	7.3.6. Peak Flow Results						
8.0	Stormwater Management Criteria Considerations	43					
	8.1. Approved Official Plan	43					
	8.2. Regional Official Plan Amendment 128	46					
9.0	Conclusion	50					

LIST OF FIGURES

Figure 1-1 – Carruthers Creek Watershed	
Figure 1-2 – Carruthers Creek Flood Plain	4
Figure 2-1 – Change in Watershed Boundary	
Figure 3-1 – Precipitation Gauges Locations	
Figure 3-2 – DRMT Sub-catchments	
Figure 3-3 – DRMT Precipitation Surface – May 27, 2009 Storm	
Figure 3-4 – Modeled and Observed Flow – November 30, 2006 Storm	19
Figure 3-5 – Modeled and Observed Flow – April 3, 2009 Storm	20
Figure 3-6 – Carruthers Creek Stream Flow Gauge Rating Curve	
Figure 3-7 – Proposed Stream Gauge Locations	26
Figure SM	Back of Report
Figure EX-08	Map Pocket
Figure PRE-DEV	Map Pocket
Figure FUT	Map Pocket
Figure ROPA-128	Map Pocket

LIST OF TABLES

Table 2-1 – 2008 Existing Model Time to Peak Summary9
Table 2-2 – Hydrologic Soil Groups11
Table 2-3 – CN Values
Table 3-1 – Design Storms Base Flow
Table 3-2 – Calibration Storm Events
Table 3-3 – Calibration Results
Table 3-4 – Design Storms Base Flow
Table 3-5 – Validation Storm Events
Table 3-6 – Validation Results
Table 3-7 – Flows per Area of Watersheds within the Greater Toronto Area
Table 4-1 –100 year Design Storm Peak Flow Comparison27
Table 5-1 – Simulated Peak Flows - 2008 Existing Condition
Table 6-1 - Simulated Peak Flows Pre-development Condition
Table 7-1 – Simulated Peak Flows Approved Official Plan Future Condition
Table 7-2 – Flow Comparison – Approved Official Plan Future Condition to 2008 Existing Condition 36
Table 7-3 Simulated Peak Flows ROPA 128 Future Condition (Regional Storm without Controls) 40
Table 7-4 – Flow Comparison –ROPA 128 Condition to 2008 Existing Condition
Table 8-1 – Philips Engineering Stormwater Mangement Criteria
Table 8-2 – Flow Comparison – Approved Official Plan Future Condition to Pre-development Condition 43
Table 8-3 – Flow Comparison – Approved Official Plan Future Condition to Pre-development Condition
with New Stormwater Management Criteria45
Table 8-4 – Revised Stormwater Management Criteria 46
Table 8-5 – Flow Comparison – ROPA 128 Condition to Pre-development Condition

APPENDICES

Appendix A – Background Information

Appendix B – Runoff Coefficients

Appendix C – TRCA Pond Information

Appendix D – Model Input Parameters

Appendix D-1 – 2008 Existing Condition Model Input Parameters

Appendix D-2 – Pre-development Model Input Parameters

Appendix D-3 – Approved Official Plan Future Condition Model Input Parameters

Appendix D-4 – Regional Official Plan Amendment 128 Future Condition Model Input

Parameters

Appendix E – Calibration Event Validation

Appendix F – Base Flow Graphs for Calibration and Validation Storms

Appendix G – Calibration and Validation Results

Appendix G-1 – Graphs of Results of Calibration Storms

Appendix G-2 – Graphs of Results of Validation Storms

Appendix G-3 – TRCA Memo – Hydrology Discussion

Appendix H – Proposed Pond Results and Rating Curves

Appendix H-1 – Approved Official Plan Proposed Pond Results and Rating Curves

Appendix H-2 – Regional Official Plan Amendment 128 Proposed Pond Results and Rating Curves

Appendix I – Statement of Limiting Conditions and Assumptions

1.0 Introduction

This report summarizes the analysis carried out by Cole Engineering Group Ltd. (Cole Engineering) for the Town (Town, "Owner") and the Toronto and Region Conservation Authority (TRCA) to prepare a hydrology update for the Carruthers Creek Watershed. This report includes an update to the hydrologic model for Carruthers Creek, using Visual OTTHYMO V.2.3 (VO2). The work undertaken was used to validate the flows established in the previous watershed model update, prepared by Philips Engineering in 2007, and will subsequently be used to define the flood elevations throughout the subwatershed as part of the Carruthers Creek Flood Management and Analysis Municipal Class Environmental Assessment for flood remediation within the Pickering Beach area of the Town.

This report will discuss the review of previous modelling work, recommended updates to the model and subsequent flows, as well as establish recommendations for stormwater management criteria for development planned within the approved Official Plan Amendment (OPA), and evaluate the impacts of future potential development within the headwaters of the Carruthers Creek Watershed.

1.1. Study Background

Carruthers Creek conveys runoff to Lake Ontario from an approximate drainage area of 36 km² within the City of Pickering (Pickering) and the Town. The Carruthers Creek Watershed extends north from Lake Ontario to north of 8th Concession in Pickering between Westney Road and Audley Road. The map of the watershed is presented in **Figure 1-1**.

Hydrology Update Report

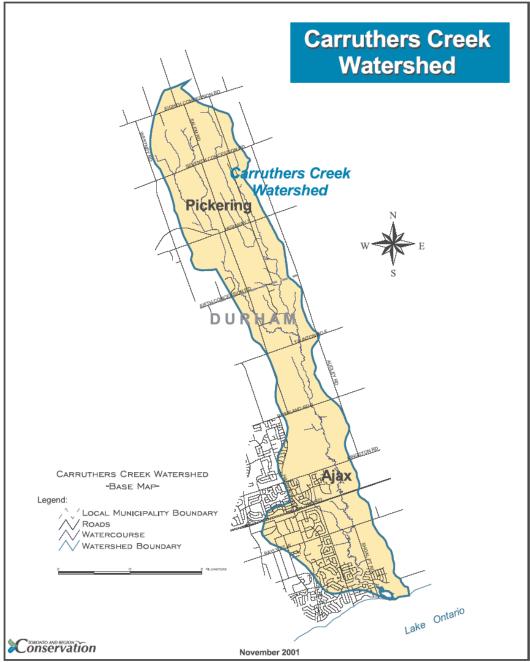


Figure 1-1 – Carruthers Creek Watershed

In 2010, the Town initiated a Schedule 'C' Municipal Class Environmental Assessment (Class EA) of the Carruthers Creek Watershed, with a specific emphasis on flood remediation for the Pickering Beach area. Floodplain mapping updates prepared by R.J. Burnside & Associates Ltd. (Burnside) for the TRCA had identified a spill point at Seabreeze Road. Initial mapping had not delineated the extent of potential flood risk to the Pickering Beach area until the update was completed in 2009. The progression of flood mapping in this area from 1986, 2007, and 2009 is presented below in **Figure 1-2**. As can be seen through this mapping, flooding risk associated with the regulatory regional storm event seems to have increased with time.

Figure 1-2 – Carruthers Creek Flood Plain

(Source: Town of Ajax Carruthers Creek Watershed Environmental Assessment Report to General Government Committee, 2010)

1.2. Purpose

The purpose of Cole Engineering's hydrology update was to review the methodology and hydrology model update for the watershed prepared by Philips and summarized in the 2007 report Carruthers Creek Hydrology Update for Toronto and Region Conservation Authority (2007 hydrology update report). This model was updated to the 2008 condition to allow for calibration to precipitation and stream flow data available mainly between 2008 and 2009. Along with updating the model to the 2008 condition, any discrepancies identified through the review of the 2007 hydrology model were also noted and updated.

Once the model was updated to the 2008 existing condition it was calibrated using stream flow data provided by the TRCA and precipitation data provided by the TRCA and Central Lake Ontario Conservation Authority (CLOCA).

The calibrated model was then used to evaluate two (2) future conditions:

- 1. The approved OPAs for the Town and for Pickering; as well as,
- 2. A future watershed build-out based on the proposed Regional Official Plan Amendment 128 (ROPA 128).

The stormwater management criteria for Carruthers Creek recommended in the Philips 2007 update was considered and further recommendations associated with the future approved development and future potential development were provided. This included recommendations regarding the necessity of Regional controls within this watershed.

1.3. Background Information

Appendix A lists the background information used for the hydrology model update.

2.0 Previous Hydrology Model Review and Update

The Carruthers Creek Watershed was modelled using VO2 and was last updated by Philips Engineering as summarized in the report titled: Carruthers Creek Hydrology Update for Toronto and Region Conservation Authority, dated March 2007. The hydrology model and supporting report for the Carruthers Creek Watershed was provided to Cole Engineering by the TRCA. Cole Engineering used VO2 to review and validate the model. The various input parameters in the VO2 model were reviewed, as was the overall layout and connectivity of the sub-catchments within the model. The following sections describe the methodology that Philips Engineering used for their modelling and the updates made by Cole Engineering. In general it was concluded that, aside from the noted recommended changes, the approach applied by Philips was acceptable based on information available at the time.

For Cole Engineering's update of the hydrology model, the majority of the stream flow and precipitation data available from the TRCA was for the time period between the years 2008 and 2009, with sporadic data available for portions of the years 2006 and 2007. Given the timeline that the stream flow and precipitation data were available for, it was decided it was necessary to update the 2005 condition model to the 2008 condition. This would better represent the developed form of the watershed when compared with the available stream flow and precipitation data. Information was gathered from the Town regarding developments that occurred between the years 2005 and 2008. This was used to update the model to the 2008 condition. Through the review, any errors, omissions, and/or modifications to the previous watershed model were made.

2.1. Watershed Boundary

Philips Engineering had verified, where possible, the base sub-catchment delineation of the watershed and modified as necessary through review of drainage plans and maps, contours, and sewer mapping.

Similarly, Cole Engineering has reviewed the watershed boundary using one (1) m contour information provided by the TRCA to compare the catchment delineation. For any boundaries within development areas that appeared to deviate from what the contour information indicated, the Town was contacted to obtain further information on developments infrastructure. The Town provided stormwater management reports and/or drainage area plans for the developments in question.

Generally the watershed boundary appeared accurate and was altered only slightly, as shown in **Figure 2-1**, based on the Audley Road Lands subdivision drainage plan, provided by the Town.

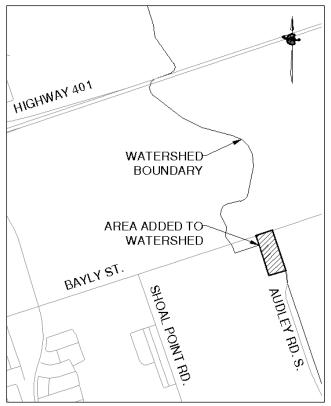


Figure 2-1 – Change in Watershed Boundary

2.2. Sub-catchment Layout

The sub-catchment layout in the VO2 model was reviewed in conjunction with the 2007 hydrology update report. The 2007 hydrology update included 16 model scenarios:

- 1. 2002 Existing Condition;
- 2. 2002 Existing Condition Regional Storm;
- 3. 2005 Existing Condition;
- 4. 2005 Existing Condition Regional Storm;
- 5. 2005 Existing Condition without Stormwater Management Ponds built since 2002;
- 6. Future Condition with Committed Stormwater Management Ponds;
- 7. Future Condition with Committed Stormwater Management Ponds Regional Storm;
- 8. Future Condition with Greenbelt;
- 9. Future Condition with Greenbelt Regional Storm;
- 10. Future Condition with Greenbelt and Natural Heritage System;
- 11. Future Condition with Greenbelt and Natural Heritage System Regional Storm;
- 12. Future Condition without Stormwater Management Ponds;
- 13. Future Condition with the Proposed Stormwater Management for Alternative 2;
- 14. Future Condition with the Proposed Stormwater Management for Alternative 3;
- 15. Future Condition with Ultimate Urbanization except the Greenbelt; and,
- 16. Future Condition with Ultimate Urbanization except the Greenbelt Regional Storm.

The 2005 existing condition model (scenario 3 above), provided by the TRCA, had some discrepancies with the hydrologic modelling parameters provided in Appendix B of the 2007 report. There were three (3) additional sub-catchments in the 2005 existing condition model that were not listed in Appendix B of the report. These additional sub-catchments were 135, 136, and 141.

However, the 2005 existing condition without the stormwater management ponds built since 2002 (scenario 5 above) was consistent with the report. This model was used as the base point for the 2008 condition model update. The additional stormwater management ponds built between the years 2002 and 2005 were added into this model before any other updates were made.

2.3. Sub-catchment Delineation

Development information from 2005 through 2008 was obtained from both the Town and Pickering. Development information obtained included: lists of developments, locations, and drainage plans for each relevant area. This information was then used to update both the 2005 land use and the 2005 sub-catchments mapping to the 2008 condition. In all, six (6) residential subdivisions and one (1) industrial development were added into the hydrology model. All of these developments occurred within the Town.

2.4. Time to Peak

The time to peak calculations completed in the 2007 hydrology update report were reviewed. The hydrology update had used the Bransby-Williams Method for all time to peak calculations. The Ministry of Transportation Ontario (MTO) Drainage Manual (which is a widely accepted practise document) as well as the VO2 Reference Manual state that for a drainage area where the runoff coefficient is less than 0.40 the Airport Method should be used for estimating the time to peak and the Bransby-Williams Method should be used of drainage areas with a runoff coefficient greater than 0.40.

As the majority of the undeveloped areas (represented by NASHYD VO2 commands) within the Carruthers Creek Watershed have a runoff coefficient less than 0.40, it is believed that the Bransby-Williams Method for calculating time to peak may underestimate the times to peak and overestimate flows generated from these catchments. This overestimation of flows in the undeveloped condition is expected to underestimate the impacts of development within portions of the watershed. Calculated runoff coefficients for the watershed are available in **Appendix B**. Runoff coefficients were aerially weighted using values based on land use and soil type from the MTO Design Chart 1.07 and the Town design standards.

The form of the Bransby-Williams equation used in the 2007 hydrology update report was shown as:

$$t_c = \frac{0.605L}{S^{0.2}A^{0.1}}$$

The more familiar form of the Bransby-Williams equation, which is the form in both the MTO Drainage Manual and the VO2 Reference Manual is:

$$t_c = \frac{0.057L}{S^{0.2}A^{0.1}}$$

In the above formula length is in metres, area is in hectares, and time of concentration is calculated in minutes. This formula was used by Cole Engineering when evaluating the time to peak calculations for the undeveloped portions of the watershed. The difference in the two (2) equations was attributed to the use of different units in the Philips model.

The equation used for the Airport Method was taken from the MTO Drainage Manual:

$$t_c = \frac{3.26(1.1 - C)}{S_w^{0.33}}$$

Time of concentration is calculated in minutes. The times to peak calculated with the Airport Method were significantly longer than those calculated with the Bransby-Williams Method, as shown below in **Table 2-1**. The time of concentration for the creek, which was added to the time of concentration calculated with the Airport Method, was calculated based on Regional storm velocities estimated by the existing HEC-RAS model and the length of the creek. The length of the creek was considered to be from the point where the tableland flow joins the creek to the outlet of the drainage area and was not taken as the entire length of the creek within the drainage area. The Regional storm was chosen because it provides the most conservative time to peak estimate. A time of concentration of the creek was added to the Airport Method time of concentrations and not the Bransby-Williams Method time of concentration because the Bransby-Williams Method takes into account the area of the catchment, where the Airport Method does not. Therefore, the Bransby-Williams Method is calculating the time of concentration for the entire drainage area; whereas, the Airport Method is calculating the time of concentration for the table land areas and this must be summed with the time of concentration within the creek. For all time to peak calculations time to peak was calculated as

$$t_p = \frac{2}{3}t_c$$

			· · · · · · · · · · · · · · · · · · ·	
Sub-catchment	Recommended Method Based on MTO Drainage Manual and VO2 Reference Manual	Cole Engineering Tp (Airport Method)	Cole Engineering Tp (Bransby Williams Method)	Philips T _p (Bransby Williams Method)
		(hr)	(hr)	(hr)
105	BW	10.44	3.21	0.99
108	BW	3.93	1.30	0.46
112	Airport	2.35	0.22	1.01
117	BW	5.11	2.44	0.69
129	BW	10.68	3.63	0.95
134	BW	8.66	2.99	0.80
139	Airport	3.37	0.94	0.16
140	Airport	1.78	0.34	0.27
143	Airport	2.95	0.76	0.45
151	Airport	1.89	0.37	0.45
152	Airport	5.26	1.78	0.57
152F	BW	1.57	0.40	N/A
1521	Airport	1.46	0.28	N/A
153	Airport	4.68	1.35	0.26
154	Airport	3.20	0.97	0.44
157	Airport	6.48	1.84	0.26
158	Airport	2.60	0.63	0.16
160	Airport	2.87	0.58	0.33
161	Airport	0.55	0.07	0.48
162	Airport	0.96	0.07	0.46
164	Airport	1.03	0.09	0.27
170	BW	3.82	1.24	0.27
171	Airport	3.62	0.88	2.04
172	Airport	5.36	2.55	0.29
173	Airport	4.06	1.26	0.37
174	Airport	8.17	4.37	1.50
175	Airport	8.02	4.18	1.18
176	Airport	4.41	1.22	0.63
177	Airport	5.59	1.67	0.58
178	Airport	2.52	0.47	0.43
179	Airport	4.68	1.43	0.50
180	Airport	3.80	0.98	0.80
181	Airport	4.55	1.67	0.95
182	Airport	9.88	5.01	1.79
183	Airport	5.98	2.78	1.13

Table 2-1 – 2008 Existing Model Time to Peak Summary

When the model calibration and validation was completed, as described later in **Section 3.0**, the time to peak values calculated with the Airport Method resulted in simulated stream flow that better matched the available measured stream flow data. Based on the calibration results as well as the recommendations from the MTO Drainage Manual and the VO2 Reference Manual it was determined that the Airport Method was the most appropriate for use within the Carruthers Creek Watershed for sub-catchments where the runoff coefficient is less than 0.40 and the Bransby-Williams Method should be used for sub-catchments where the runoff coefficient is greater than 0.40.

2.5. Sub-catchment Pervious Length and Slope

The sub-catchment pervious length and slope were uniformly set to the VO2 recommended defaults of 40 m and 2% respectively, this was found to be acceptable.

2.6. Sub-catchment Impervious Length and Slope

The sub-catchment impervious length was calculated with $A=1.5*L^2$. The impervious slope was calculated from topographic mapping. Both of these methods are acceptable.

2.7. Curve Numbers

Modified curve numbers (CN*) were used, which is appropriate.

CN* with the Antecedent Moisture Condition (AMC) II condition was used by Philips for the 2 through 100 year models. The AMC III condition was used the Regional Storm; this was correctly varied to represent a saturated ground condition.

The CN values assigned to each land use and soil type are reasonable, however, Cole Engineering had recalculated the CN* values for each of the 2008 sub-catchments based on the methodology described in the following section.

2.7.1. Soil and Land Use

According to the Soil Map of Ontario County, by Agriculture and Agri-Food Canada, the predominant soil types within the watershed are Bondhead loam with good internal drainage, Bondhead sandy loam with good drainage, and Smithfield clay loam with imperfect drainage. **Figure SM** illustrates the soil types located within the study area.

Table 2-2 below summarizes the soil types and their hydrologic soil group, which were included in the shape file, provided by the TRCA and were checked against the MTO Drainage Management Manual Design Chart 1.08. This shape file was used in the CN calculations.

Soil Type (Abbreviation)	Parent Materials	Drainage	Hydrologic Soil Group
Bondhead loam (Bl)	Calcareous grey loam & sandy loam till	Good	В
Bondhead sandy loam (Bs)	Calcareous grey loam & sandy loam till	Good	AB
Milliken loam (Ml)	Calcareous brown loam till	Imperfect	BC
Brighton sandy loam (Brsl)	Calcareous sand	Good	AB
Woburn sandy loam (Wos)	Calcareous brown loam till	Good	А
Smithfield clay loam (Scl)	Calcareous clay	Imperfect	С
Tecumseth sandy loam (Tsl)	Calcareous sand	Imperfect	AB
Darlington loam (Dal)	Clay loam till derived from limestone and shale	Good	С
Guerin loam (Gul)	Calcareous grey loam & sandy loam till	Imperfect	В
Schomberg clay loam (Shc)	Calcareous clay	Good	С
Bottom Land (B.L.)	Recent alluvial deposits	Variable	-
Muck (M)	Well decomposed organic deposits	Very poor	В
Marsh (Ma)	Saturated mineral soil with marsh vegetation	Very poor	-
Brighton gravelly sandy loam (Brsl/g)	Calcareous sand	Good	AB
Brighton sandy loam stony phase (Brsl-st)	Calcareous sand	Good	AB

Table 2-2 – Hydrologic Soil Groups

The predominant land uses over the study area are agriculture, low density residential, and natural areas. There are also some commercial, estate residential, golf courses, medium density residential, high density residential, highway, industrial, institutional, open water, recreation, railway, cemetery, and urban open space areas. Hydrologic soil modified Soil Conservation Service curve numbers for the watershed were generally taken from the 2007 hydrology update and are summarized below in **Table 2-3**. It should be noted that for marsh/bogs a CN of 50 was used. Bottom land was grouped with the most conservative hydrologic soil group within the catchment where the bottom land existed.

Land Use	Soil Type					
	A	AB	В	BC	С	
Estate Residential	39	50	61	67.5	74	
Low Density Residential	39	50	61	67.5	74	
Medium Density Residential	39	50	61	67.5	74	
High Density Residential	39	50	61	67.5	74	
Institutional	39	50	61	67.5	74	
Industrial	39	50	61	67.5	74	
Commercial	39	50	61	67.5	74	
Agricultural	63	70	74	78	82	
Natural Area	30	44	58	64.5	71	
Recreational	39	50	61	67.5	74	
Open Water	98	98	98	98	98	
Railway	72	77	82	84.5	87	
Highway	98	98	98	98	98	
Urban Open Space	39	50	61	67.5	74	
Golf Course	39	50	61	67.5	74	
Cemetery	39	50	61	67.5	74	

Table 2-3 – CN Values

2.8. Initial Abstraction

The initial abstraction values were aerially weighted using 1.0 mm for impervious areas, 3.5 mm for agricultural areas, 5.0 mm for lawns, and 8.0 mm for meadows and woodlots. These values are on the higher end of the acceptable range. While it was found that sensitivity to these parameters was not significant, Cole Engineering adjusted the initial abstractions for the watershed based on the following:

- 1.0 mm for impervious areas;
- 3.0 mm for lawns;
- 4.0 mm for agricultural areas; and,
- 5.0 mm for meadow and woodlots.

These modified initial abstraction values are more conservative than the values assumed by Philips Engineering. It was determined through the calibration process that varying the initial abstraction values did not create a significant change to the hydrologic model results.

2.9. Channel Routing

The VO2 channel routing command was used for the sub-catchments draining to the various identified branches of Carruthers Creek. Information for the channel routing was determined by Philips Engineering from topographic information. This is acceptable practice.

Cole Engineering did an analysis to determine the sensitivity of the route channel command to changing the elevations of the cross section. Route channel 171 was chosen and a few cross sections (obtained from the 2009 HEC-RAS model by Burnside) were chosen along the route channel's length and the model was run with the varying cross sections. The three (3) cross sections chosen were: (1) 4.039, which is the most upstream cross section within this sub-catchment; (2) 4.001, which is the most downstream cross sections varied the flow output from the route channel command by 0.4% and 0.6%, respectively and the middle cross section varied by 1.7%. However, the impacts at Lake Ontario were observed as 0.3% at most. It was determined that changing the route channel cross section had little impact on the model and the cross section in the VO2 model were representative of an average cross section of those analyzed by Cole Engineering. Therefore it was determined to not change the route channel cross sections as input by Philips Engineering for the 2007 hydrology update.

A channel routing command was missing from the model for sub-catchment 172. Therefore, this was added in for the 2008 existing condition. The cross section for this channel was taken from topographical information provided by the TRCA.

2.10. Reservoir Routing

The stage storage discharge curves used within the watershed model were provided by the TRCA. The model was checked to confirm that the rating curves were consistent with the pond rating curves listed in Appendix A of the Philips Engineering Report. The rating curve for pond 194.0 (John Boddy-Warbler Swamp) in the model did not match the rating curve in the report. The TRCA confirmed that the rating curve in the report was correct.

Where necessary, Philips Engineering modified the rating curves with an overflow ordinate. This was done for ponds that were designed as erosion control facilities based on past stormwater management strategies. For these ponds, the rating curve in the report did not match the rating curve in the model. It was checked to determine if the 100 year storm event would exceed the rating last ordinate on the rating curves entered in the model. If it had the TRCA was contacted to confirm the rating curves. These ponds were 253.0 (Carruthers Creek Residential Phase II – South Pond), 253.1 (Carruthers Creek Residential Phase II – North Pond), and 254.0 (Guthrie Commercial - Hwy 2 Pond).

The locations of the ponds are shown in **Figure EX08**. TRCA Pond information is included in **Appendix C** for reference.

2.11. Calibration Storm Selection

The criteria used for selecting storms for model calibration were storms greater than 25 mm and a peak flow response greater than 1.0 m^3 /s.

2.12. Aerial Reduction Factor

Philips Engineering calculated the aerial reduction factor for the Regional Storm for each node using the equivalent circular area method as per the MTO Drainage Management Manual, 2008 and the MNR Flood Plain Management Technical Guidelines, 1986. This resulted in a maximum aerial reduction factor of 92.7 being applied at Lake Ontario.

2.13. Summary

With the modifications, the Carruthers Creek watershed has been delineated into seventy (70) subcatchments in the Existing 2008 scenario. Boundaries and land uses within several of the subcatchments were also updated to reflect development from 2005 to 2008. **Figure EX08** illustrates the Carruthers Creek watershed with its 2008 land use, sub-catchments, and stormwater management ponds. The input parameters used are summarized in **Appendix D** for reference. With the exception of the time to peak used in the previous hydrology update, the previous update was generally acceptable with some minor revisions required.

3.0 Model Calibration / Flow Comparison

Once updated, the VO2 model was compared to the observed stream flow data. Stream flow data from Station 32 at Bayly Street was compared to flows at ADDHYD 1033 until July 1, 2007. The stream flow gauge was relocated to Station 112 at Achilles Road (ADDHYD 1038) after July 16, 2007.

Calibration of the VO2 model was considered in an attempt to replicate the observed stream flow data with the modelling results.

3.1. Storm Selection

Precipitation data from six (6) different gauges around the Carruthers Creek watershed were obtained from the TRCA and CLOCA. Three (3) of the precipitation gauges were within the Duffins Creek Watershed and three (3) were located within the Lynde Creek Watershed. Two (2) rain gauges were not used for the model calibration because the precipitation values were unreasonably inconsistent with the rest of the gauges. Therefore, two (2) gauges from the Duffins Creek Watershed and two (2) gauges from the Lynde Creek Watershed were used in the calibration analysis. For the model validation the precipitation gauge data from 2009 was markedly more consistent and so all six (6) gauges were able to be used.

Four (4) storms selected for calibration were November 30, 2006, July 20, 2008, August 11, 2008, and September 13, 2008. Cole Engineering selected these storms based upon available data and the same criteria established by Philips Engineering for selecting the storms, which was:

- Precipitation greater than 25 mm at some or all of the rain gauges; and,
- A peak flow response of greater than 1 m³.

The magnitude of the observed flows is relatively small when compared to those under the Regional event.

The TRCA provided information regarding the magnitude of calibration events from other east end watersheds in the Greater Toronto Area (GTA), which is included in **Appendix E**. The TRCA concluded that the magnitude of the calibration events used in the other watersheds compared was significantly lower than events that cause flooding, which justifies the calibration storms used.

3.2. Base Flow Separation

The base flow separation was achieved by extending the base flow recession forward under the peak of the hydrograph, starting with the point of lowest discharge and then extending at constant discharge to a point on the recession limb, as described in "Hydrology and Floodplain Analysis Fourth Edition" by Bedient, Huber, and Vieux, 2008. **Appendix F** includes the base flow graphs illustrating the base flow for all of the calibration and validation storms. **Table 3-1** below summarizes the base flow for each storm.

Storm	Base Flow (m ³ /s)
November 30, 2006	0.326
July 20, 2008	0.0490
August 11, 2008	0.686
September 13, 2008	0.0728

Table 3-1 – Design Storms Base Flow

3.3. Distributed Rainfall Modeling Technique

Distributed Rainfall Modeling Technique (DRMT) is a custom ArcGIS tool developed by Cole Engineering. The function was used in the calibration process to account for the spatial variation in the distribution of rainfall for areas between the rain gauges. Its algorithm involves three (3) main steps:

- 1. Populating geo-referenced rain gauge features with actual precipitation data;
- 2. Generating a surface of precipitation values using spline interpolation for each time step; and,
- 3. Calculating the average value of the section of the rain surface contained within each specified catchment.

As briefly discussed in **Section 3.1**, four (4) rain gauges were used to run DRMT for the calibration. These were TRCA gauge 84, TRCA gauge 97, CLOCA gauge 02HC018, and CLOCA gauge Prec5. The locations of these gauges are shown in **Figure 3-1**.

Data was provided to Cole Engineering for two (2) additional gauges, one (1) from the TRCA and one (1) from CLOCA however these gauges did not have adequate data for the calibration storms to be used in the DRMT process.

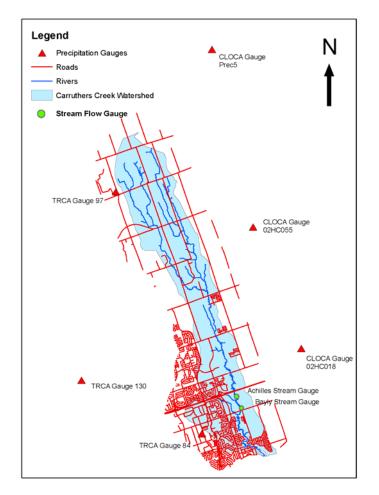


Figure 3-1 – Precipitation Gauges Locations

The result of the DRMT is a unique precipitation value for each of the sub-catchments. However as VO2 is limited to four (4) rain gauges in any scenario, the sub-catchments were grouped into four (4) larger catchments with similar precipitation values. The four (4) larger catchments were determined by first running DRMT for all of the sub-catchments in the watershed for four (4) storms. The range of precipitation values for each sub-catchment at a given point in time was analyzed and divided into four (4) equal ranges. For example, if the precipitation for a given storm ranged from 1 mm to 12 mm the ranges would be 1 mm to 4 mm, 4.1 mm to 6 mm, 6.1 mm to 9 mm, and 9.1 mm to 12 mm. The sub-catchments were then split into four (4) groups according to their precipitation value. The sub-catchments consistently were within the same rainfall range and so were able to be grouped into the four (4) larger catchments shown in **Figure 3-2**. DRMT was then run a second time to provide average precipitation data for these four (4) catchments. This created a surface with the rainfall as shown in **Figure 3-3**. For the sub-catchments that were further south than the rain gauges and so not a part of the surface created, precipitation values were assigned based on the catchments that they were nearest.

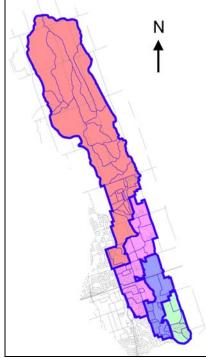


Figure 3-2 – DRMT Sub-catchments

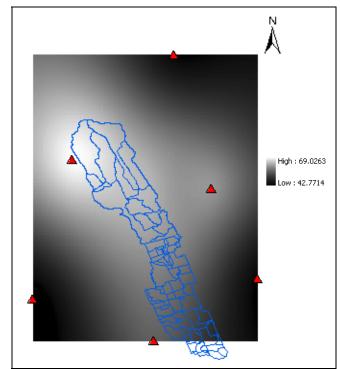


Figure 3-3 – DRMT Precipitation Surface – May 27, 2009 Storm

3.4. Antecedent Moisture Analysis

Based on the amount of precipitation for the five (5) days prior to the storm, the soil AMC was estimated using MTO Design Chart 1.10 as a guide. AMC II represents normal conditions, while AMC I and AMC III reflect dry and wet soil conditions, respectively. **Table 3-2** below lists the AMC of each of the storms used for calibration.

Storm Date	Average DRMT Precipitation (mm)	Total Average Precipitation Previous Five Days (mm)	Antecedent Moisture Condition	Description
November 30, 2006	49.1	0	AMC II	 Since this storm had a long duration and two (2) peaks in rainfall were observed the ground would have become saturated during the first rainfall peak. Therefore, even though there was no rainfall in the previous five (5) days an AMC II condition is justified. Historical temperature data available from Environment Canada was checked and the temperatures were below zero (0) prior to and when the time to peak occurred (though they were above zero (0) when the storm started). Therefore, the runoff from the storm would be increased and so this further justifies an AMC II condition. Since this storm was in November a larger peak flow response can also be attributed to decreased evaporation.
July 20, 2008	45.5	13.9	AMC II	 A medium sized storm (approximately 12 mm of precipitation) occurred on July 19, 2008, which would have wet the soils causing an AMC II condition.
August 11, 2008	49.7	52.3	Average of AMC II and AMC III	 There was a significant amount of rain in the five (5) days prior to the storm. According to the MTO Design Charts it is very close to AMC III conditions and since the amount of precipitation for this storm is also quite large this would cause an average of AMC II and AMC III conditions for this storm.
September 13, 2008	21.9	22.1	AMC II	 Due to the amount of rain in the five (5) days prior to this storm it should be AMC II condition. This storm was small and had a small flow response. More error is associated with routing for smaller events. Also, this storm is the least representative of larger storm events, compared to the other three (3) storms used for calibration.

Table 3-2 – Calibration Storm Events

3.5. Time to Peak

During the calibration process the model was first run with the time to peak calculated for the NASHYD areas using the Bransby-Williams Method. When the Airport Method was used for the sub-catchments, where the runoff coefficient was less than 0.40 and the Bransby-Williams Method was used for the sub-catchments, where the runoff coefficient was greater than 0.40, it was observed that the modelled peak flow aligned more closely with the peak flow from the stream flow data.

Figure 3-4 and **Figure 3-5** illustrate the modelled stream flow data for one (1) of the calibration storms and one (1) of the validation storms with the different time to peak methods.

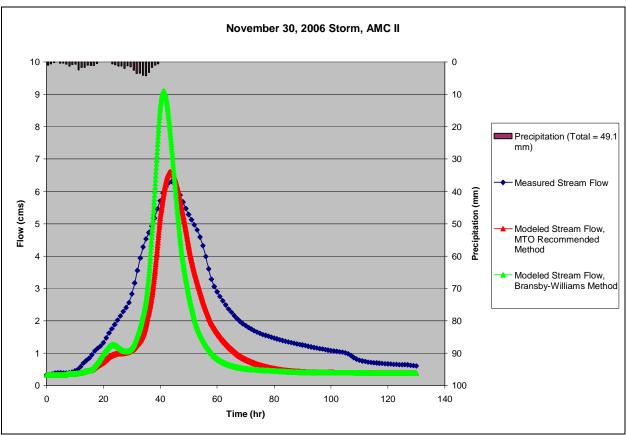


Figure 3-4 – Modeled and Observed Flow – November 30, 2006 Storm

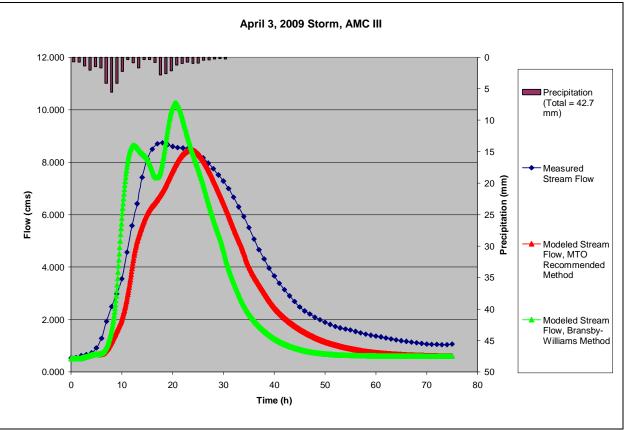


Figure 3-5 – Modeled and Observed Flow – April 3, 2009 Storm

3.6. Calibration to Stream Flow Data

A number of calibration steps were taken when comparing modelled flows to the observed stream flow data. These were as follows:

- The model was updated to the 2008 development condition;
- The use of DRMT used to calculate the precipitation;
- The recommended method by MTO (Airport Method or Bransby-Williams Method, depending on the imperviousness) was used for time to peak calculations;
- IA values calculated based on 1 mm for impervious areas, 3 mm for lawns, 4 mm for agriculture areas, and 5 mm for natural areas;
- The CN* value was adjusted to account for the AMC using MTO Design Chart 1.10 as a guide.

Other parameters were checked to determine their impact on the peak flows as well as the shape of the graph. These included:

- Varying the N value for the NASHYDs to increase the routing effects; and,
- Increasing the Manning's n values of the route channels.

Neither of these was determined to have a significant impact on the peak flows within the watershed and ultimately were not adjusted.

Table 3-3 below summarizes the calibration results. The results presented include base flow (summarized above in **Table 3-1**), which was added to the VO2 flow results. **Appendix G** includes the graphs of the calibrated storms. The calibration of the model generally appears quite accurate when analyzing the graphs shown in **Appendix G**. Also, the modeled peak flows are quite similar to the measured peak flows, well within the 25% desired by the TRCA.

Storm	Peak Flow (m ³ /s)		$C_V = V_{runoff} / V_{precipitation}$			Time to Peak (h)		
Event	Measured	Modeled	Difference	Measured	Modeled	Difference	Measured	Modeled
November 30, 2006	6.30	6.60	+4.8%	0.455	0.250	-45.1%	44	44
July 20, 2008	4.23	4.92	+ 16.3%	0.131	0.177	+ 35.1%	22	21
August 11, 2008	5.74	5.85	+ 1.9%	0.180	0.162	-10.0%	11	11
September 13, 2008	1.32	1.42	+ 7.6%	0.275	0.137	- 49.8%	36	16

Table	3-3 -	Calibration	Results

The results illustrate that although the modeled peak flows are similar to the measured peak flows there are instances where the difference between the modeled and measured volumes is greater than a 25%. Specifically this occurs in the November 30, 2006, July 20, 2008, and September 13, 2008 storm events. Due to the variation in timing and movement of some systems through the watershed, representative results between the simulated and observed hydrographs can be difficult for certain types of storms. This is discussed further in **Section 3.8**.

As the results from this hydrologic model will ultimately be used to create the Regulation flood lines within the watershed, it is important that the peak flows closely align with the modeled peak flows. As a result volumes were considered as secondary.

3.7. Model Validation

Once the model was calibrated it was validated using three (3) additional storm events. The three (3) storms selected for validation were April 3, 2009, May 27, 2009, and July 25, 2009. These storms were selected using the same criteria as the calibration storms. The base flow for each of these storms was determined using the methodology described earlier and are presented in **Table 3-4** below. The base flow graphs are presented in **Appendix F** for reference.

Table 3-4 – Desi	gn Storms Base Flow
------------------	---------------------

-	
Storm	Base Flow (m ³ /s)
April 3, 2009	0.511
May 27, 2009	0.0672
July 25, 2009	0.280

Six (6) rain gauges were used for the DRMT process for the validation storms. For the validation storms the precipitation data was consistent amongst all six (6) gauges. The data therefore appeared to be more accurate than it was for the calibration storms.

The gauges used were TRCA gauge 84, TRCA gauge 97, TRCA gauge 130, CLOCA gauge 02HC018, CLOCA gauge 02HC055, and CLOCA gauge Prec5. The locations of these gauges are shown above in **Figure 3-1**.

The AMC of the validation storms was calculated taking into account the rainfall from the previous five (5) days. **Table 3-5** below summarizes the AMC used for each validation storm event.

Storm Date	Average DRMT Precipitation (mm)	Total Average Precipitation Previous Five Days (mm)	Antecedent Moisture Condition	Description					
April 3, 2009	42.68	25.6	AMC III	 This storm took place during the dormant season and so according to the MTO Design Chart 1.10 it is almost categorized as an AMC III condition due to the amount of rainfall in the previous five (5) days. This storm should be increased from AMC II to an AMC III since there are two (2) visible peaks in the rainfall and so the ground would become saturated during the first rainfall peak and creating an AMC III conditions are defined as AMC I, AMC II, or AMC III but in reality antecedent moisture in the soil is a sliding scale and is not always best represented by one (1) of these three (3) values. Therefore, this storm being modeled as an AMC III condition may not completely take into account the soil moisture before this storm occurred and this may explain the difference in peak flows between the measured stream flow and the modeled stream flow. 					
May 27, 2009	55.68	0.2	AMC I	 Since there was almost no rainfall during the previous five (5) days before the storm and the storm occurred in July it is classified as AMC I. 					
July 25, 2009	34.79	29.3	Average of AMC II and AMC III	 Due to the amount of rainfall in the five (5) days prior to the storm this should be classified as an AMC II. Similar to the April 3, 2009 storm an AMC II condition may not best represent the antecedent moisture conditions present when this storm occurred. When the results of modeling this storm as an AMC III condition were analyzed the modeled stream flow best matched the measured stream flow when the storm was modeled as an average of AMC II and AMC III. 					

Table 3-5 – Validation Storm Events

The validation process did validate the calibration process as can be seen by the results in **Table 3-6** below and the graphs in **Appendix G**. The results in **Table 3-6** include the base flow (summarized in **Table 3-4** above), which was added to the flow results from VO2. For the validation events the modelled peak flow and volume are all within or very close to the 25% of the measured data.

Storm	Ре	ak Flow (m ³	/s)	C _v ='	V _{runoff} /V _{precip}	itation	Time to Peak (h)			
Event	Measured	Modeled	Modeled Difference		Modeled	Difference	Measured	Modeled		
April 3, 2009	8.74	8.46	-3.2%	0.574	0.428	-25.4%	18	24		
May 27, 2009	1.67	2.00	+19.8%	0.193	0.180	-6.74%	53 (first peak at 37, second peak at 45)	24 (second peak at 42)		
July 25, 2009	8.66	8.93	+3.1%	0.463	0.403	-13.0%	13	9		

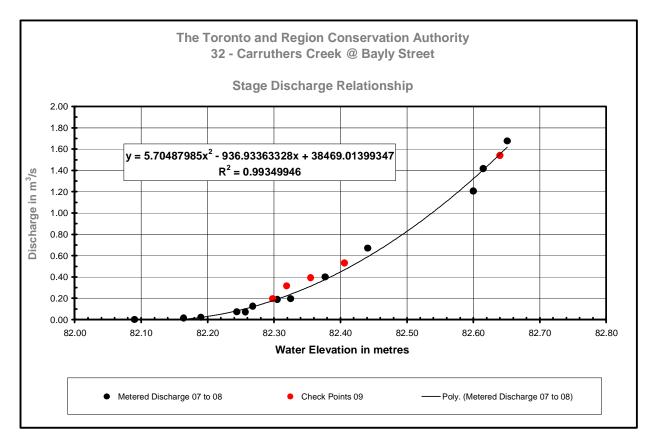
Table 3-6 – Validation Results

As additional validation, Cole Engineering compared the modelled Regional flows obtained from the 2008 existing condition model with the flows from other watersheds within the GTA as shown below in **Table 3-7**. Based on conversations with the TRCA it was determined that the Carruthers Creek Watershed most closely resembles the Duffins Creek Watershed due to similar topography, development form in the headwaters, geographically, and have similar soils. For this comparison, flows were converted to a flow per unit area for the Regional event.

The flows for the Duffins Creek Watershed were obtained from "Duffins Creek Hydrology Update", dated May 2002 by Aquafor Beech and the remainder of the flows were provided by the TRCA. A comparison of the flow per area can be found below in **Table 3-7**. As the table suggests, flows generated from the updated model are consistent with flows within the Duffins Creek Watershed.

	Location	Area (km ²)	Flow (m ³ /s/km ²)	
DR - German Mills Creek	Flow Node 32.84 (U/S of John St.)	32.84	8.60	
Petticoat Creek	Flow Node 161 (@ Lake Ontario)	25.51	7.42	
RR - Bruce Creek	Flow Node 867(D/S of 16th Ave)	35.51	5.68	
DR - West Don River	Flow Node 5.2 (U/S of Langstaff Rd)	30.64	8.10	
EC - Spring Creek	Flow Node J (D/S of HWY 407)	42.09	9.40	
	Flow Node 6.1 (West Duffins Ck s. of 9th Con Rd)	32.50	3.31	
Duffins Creek	Flow Node 4.1 (Reesor Ck at Townline Rd/N. of Green River)	39.50	3.41	
	Flow Node 28.1 Duffins Ck at Lake ON	283.10	3.18	
	Bayly Gauge (Node 1033)	29.56	3.56	
Carruthers Creek	Carruthers at Lake Ontario (Node 1000)	36.50	4.01	

Table 3-7 – Flows per Area of Watersheds within the Greater Toronto Area



The model validation summarized above in **Table 3-6** and illustrated in **Appendix G** along with the flow comparison to the Duffins Creek Watershed demonstrates an effective calibration based on the available data.

3.8. Sources of Error

While in general the peak flows calibrated well with the observed stream flow data, it is acknowledged that the volumes did not match as well. This section is intended to identify potential sources of error as it relates to the stream flow data that could ultimately impact the accuracy of the model calibration.

The rating curve, as shown below in **Figure 3-6**, is the stage storage relationship of the stream flow gauge within Carruthers Creek as provided by the TRCA. It was noted by the TRCA that the curve is mislabelled as Bayly Street and actually shows the relationship for the Achilles Gauge. As can be seen in the below relationship, the curve does not extend beyond 1.67 m³/s. Flows beyond this limit have been extrapolated. Three (3) of the calibration storms and two (2) of the validation storms had measured stream flow above 1.67 m³/s. If the flows in excess of 1.67 m³/s spill into the floodplain or the channel cross-section is not accurately represented, peak flows may not be accurate.

Figure 3-6 – Carruthers Creek Stream Flow Gauge Rating Curve

Using an event based model rather than a continuous model for the watershed does not account for interflow and changes in CN* that occur throughout the storm event. Therefore, the modelled stream flow will not exactly match the measured stream flow.

As a rule, it is desired that the modeled peak flow and volumes are within 25% of the measured data for all of the calibration and validation storms. As mentioned above the variation in timing and movement of a system through the watershed can generate inconsistent results between the simulated and observed hydrographs difficult in some cases. For example, based on rainfall data analyzed by the TRCA, as summarized in **Appendix G**, two (2) of the calibration and validation events had thunderstorms entering the area prior to the main front, which the model would not accurately represent. Additionally, since VO2 limits the number of gauges used in hydrologic modelling, the spatial variation in rainfall cannot be represented exactly as experienced.

The validation events resulted in the modeled peak flows and volumes more closely aligning with the measured data than the calibration events. This can be attributed to more accurate stream flow data related to the relocation of the stream gauge in 2007 as well as the availability of more accurate precipitation data. All six (6) precipitation gauges were used for the validation events while only four (4) were used for the calibration events. Two (2) of the gauges were not included in the DRMT for the calibration because they did not have adequate data.

3.9. Conclusions / Recommendations

There is a significant decrease in peak flows from the 2011 calibrated model, when compared to the 2007 model of the watershed. However, the peak flows obtained from the updated, calibrated model appear to accurately represent the observed stream flow. The differences between these two (2) models can be attributed to the fact that more data was available for the calibration of this updated model as well as more recent data. Rain gauges were available from the Duffins Creek Watershed as well as the Lynde Creek Watershed. As described above the more recent precipitation data also appeared to be more consistent, which is why six (6) gauges were able to be used for the validation events in 2009 while only four (4) could be used for the calibration events in 2006 and 2008. Also, more stream flow data has become available since the time of the last model update and the gauge was moved from its location at Bayly Street to Achilles Road.

The most significant change relates to the time to peak calculation using the MTO recommended method (Airport Method when the runoff coefficient was greater than 0.40 and Bransby-Williams Method when the runoff coefficient was less than 0.40) instead of solely the Bransby-Williams Method and the use of DRMT to help account for the special changes in precipitation values at each of the sub-catchments.

The modelling of Regional flows is paramount for protection of downstream flood areas. It is believed that the methods used to establish the calibrated model are appropriate. **Appendix D** includes a summary of all of the model input parameters for the calibrated 2008 existing conditions model for all of the NASHYDs and STANDHYDs.

It is recommended that the stream gauge and precipitation monitoring be continued so that the model can be further validated in the future. As the rating curve of the current stream flow gauge does not go beyond 1.67 m³/s and the majority of the calibration and validation events had peak flows greater than this, it is recommended that stream flow monitoring be carried out for larger events. A possible method recommended for this is to carry out velocity panelling within the creek during events that would be larger than the current stream flow gauge can measure. As well, an additional flow gauge is recommended upstream of Highway 401. This will help to calibrate the model to take into account any routing effects. Also, an additional flow gauge is recommended at Taunton Road.

Taunton Road is currently the urban development boundary within the watershed. Therefore, having a gauge there will allow for calibration to occur for the undeveloped lands north of Taunton Road. This is especially important since changes in time to peak have been shown to have a significant impact on flows within this watershed. **Figure 3-7** illustrates the locations of these proposed gauges. These additional gauges would provide an opportunity for a more accurate calibration in the future.

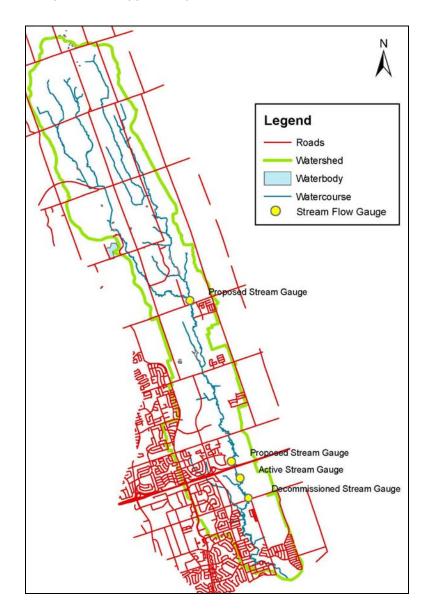


Figure 3-7 – Proposed Stream Gauge Locations

4.0 Design Storm Selection

The design storm selected in the 2007 hydrology update was the 12 hour AES storm distribution. To confirm if this is appropriate for the watershed the 100 year storm of the 6 hour, 12 hour, and 24 hour SCS Type II storm distributions, the 4 hour Chicago Distribution, and the 6 hour, 12 hour, and 24 hour AES storm distribution was compared.

The SCS and AES storm distributions were provided by the TRCA. The Chicago Storm Distribution was taken from the MTO Drainage Manual. **Table 4-1** below summarizes the results of this comparison. The 24 hour AES design storm produced the most conservative flows and therefore was selected to be the design storm for this study.

	VO2 Sub- catchment	100 Year Design Storm Peak Flow (m³/s)											
Location		6 Hour SCS Type II	12 Hour SCS Type II	24 Hour SCS Type II	6 Hour AES	12 Hour AES	24 Hour AES	4 hour Chicago Storm					
Taunton Road	3092	12.899	13.853	14.275	14.123	15.673	15.792	12.180					
D/S Bayly Street	1018	18.808	20.916	21.848	20.758	23.813	24.496	17.630					
Lake Ontario	1000	19.527	21.698	23.398	22.372	24.830	26.153	18.869					

Table 4-1 -100 y	year Design Stor	m Peak Flow (omnarison
10010 4-1 100	rear Design Ston		Joinpanson

5.0 2008 Calibrated Model Results

The peak flow rates from the 2008 existing condition are summarized below in **Table 5-1**. **Table 5-1** also compares of the peak flows from the 2007 report for the existing 2005 condition. Aerial reduction factors were applied to the Regional Storm peak flows using the methodology described in **Section 2.12**.

It can be observed that the peak flows from the 2008 condition model are generally smaller than the peak flows from the 2005 condition model created by Philips Engineering.

The Town of Ajax Carruthers Creek Watershed

Table 5-1 – Simulated Peak Flows - 2008 Existing Condition	
--	--

Location	Node	VO2	Aerial	Area (Cole							Peak Fl	ow (m³/	's)					
		ID	Reduction Factor	Area if Different)	2-yr		5-	5-yr 10-yr		25-yr		50-yr		100-yr		Regional Storm		
				(ha)	2005 EX	2008 EX	2005 EX	2008 EX										
U/S Hwy. 7		3096	100.0	408	2.57	0.97	4.19	1.50	5.41	1.88	7.07	2.40	8.39	2.80	9.76	3.22	35.04	13.07
– W. Tributary		1175	100.0	245	1.78	0.59	2.92	0.91	3.80	1.14	4.99	1.46	5.93	1.70	6.92	1.95	23.33	7.65
		3095	100.0	653	4.34	1.56	7.10	2.40	9.21	3.01	12.06	3.84	14.31	4.48	16.66	5.14	58.26	20.62
D/S Hwy. 7		1181	100.0	120 (119)	0.90	0.40	1.51	0.62	1.98	0.79	2.62	1.01	3.12	1.19	3.66	1.37	12.13	13.92
– E. Tributary		1182	100.0	281	1.67	0.59	2.72	0.90	3.51	1.13	4.59	1.44	5.44	1.67	6.33	1.92	22.66	7.32
moutary		1183	100.0	162 (176)	1.15	0.52	1.91	0.81	2.49	1.02	3.29	1.30	3.91	1.51	4.57	1.74	15.60	6.99
		3103	100.0	564 (576)	3.53	1.39	5.81	2.15	7.56	2.70	9.93	3.45	11.81	4.02	13.78	4.62	49.19	18.71
D/S 5 th		1179	100.0	192 (94)	0.58	0.20	1.01	0.32	1.35	0.42	1.83	0.55	2.21	0.65	2.62	0.76	8.63	4.03
Concession – E. Tributary		3102	99.2	577 (7.4)	3.72	1.63	6.14	2.54	8.03	3.21	10.65	4.11	12.74	4.81	14.97	5.54	57.88	23.79
		3101	99.2	769 (798)	3.95	1.82	6.55	2.85	8.58	3.60	11.41	4.63	13.68	5.43	16.09	6.27	64.43	115.17
U/S		3094	98.2	1013	4.92	2.21	8.32	3.50	10.90	4.49	14.48	5.74	17.38	6.75	20.35	7.81	75.81	35.20
Taunton Rd. –		3098	98.2	959 (990)	4.49	2.21	7.47	3.47	9.83	4.41	13.20	5.68	15.96	6.66	18.83	7.71	77.19	35.16
Confluence	G	3093	98.2	1972 (2004)	9.34	4.42	15.69	6.96	20.56	8.89	27.40	11.42	32.88	13.41	38.62	15.52	150.72	70.32
Taunton Rd.		3092	98.2	2025 (2056)	9.52	4.50	16.00	7.09	20.97	9.05	27.92	11.63	33.49	13.65	39.30	15.79	153.57	71.04
CPR	F	3087	97.1	2134 (2158)	9.52	4.55	16.11	7.23	21.18	9.28	28.22	11.99	33.91	14.09	40.27	16.31	160.56	70.12
U/S		3728	100.0	79 (85)	0.56	0.16	0.95	0.24	1.24	0.32	1.67	0.52	2.01	0.66	2.37	0.76	9.15	5.99
Rossland Rd.		3086	97.1	2144 (2168)	9.51	4.55	16.11	7.23	21.19	9.29	28.24	12.00	33.95	14.10	40.33	16.33	161.08	70.12
	E	3082	96.3	2223 (2252)	9.62	4.66	16.32	7.40	21.49	9.55	28.67	12.40	34.48	14.58	40.97	16.92	163.44	71.42
D/S		1152	100.0	115 (103)	1.05	0.22	1.77	0.36	2.33	0.46	3.09	0.60	3.70	0.71	4.35	0.82	12.89	4.15
Rossland Rd		3078	96.3	2329 (2360)	9.72	4.82	16.46	7.67	21.75	9.92	29.10	12.94	35.11	15.25	41.81	17.72	170.63	73.66

The Town of Ajax Carruthers Creek Watershed

Location	Node	VO2	Aerial	Area (Cole	Peak Flow (m ³ /s)														
		ID	Reduction Factor	Area if Different)	2-yr		5-	5-yr		10-yr		25-yr		50-yr		100-yr		Regional Storm	
				(ha)	2005 EX	2008 EX	2005 EX	2008 EX	2005 EX	2008 EX	2005 EX	2008 EX	2005 EX	2008 EX	2005 EX	2008 EX	2005 EX	2008 EX	
Confluence		1071	96.3	2471 (2517)	10.10	5.10	17.13	8.11	22.70	10.49	30.40	13.71	36.71	16.20	43.74	18.87	183.76	79.42	
Hwy. 2 E.	D	1044	95.4	2649 (2687)	10.21	5.38	17.46	8.59	23.37	11.17	31.25	14.63	37.82	17.28	45.24	20.13	191.42	82.18	
Hwy. 2 W.		1030	100.0	96 (85)	0.32	0.68	0.37	1.07	0.42	1.37	0.47	1.74	0.51	1.99	0.54	2.26	11.19	11.84	
Hwy. 401 E.		1038	94.8	2800 (2842)	10.30	5.71	17.81	9.06	23.87	11.79	32.06	15.51	38.38	18.59	45.60	21.64	194.68	85.45	
Hwy. 401 W.		1001/ 1025 for Reg.	100.0	172 (164)	1.36	1.77	2.37	2.78	3.08	3.44	3.93	4.28	4.56	4.88	5.10	5.51	21.56	22.77	
D/S Bayly		1019	100.0	301 (295)	2.44	2.40	4.22	3.91	5.56	4.90	7.28	6.17	8.55	7.17	9.83	8.19	34.80	32.72	
St.	С	1033	94.2	2921 (2973)	10.17	6.05	17.60	9.56	23.60	12.38	31.95	16.28	38.40	19.41	45.56	22.64	199.46	88.13	
		1018	94.2	3222 (3268)	10.99	6.70	18.84	10.36	25.27	13.39	34.08	17.69	40.86	21.10	48.49	24.50	218.36	108.12	
Cluett Dr.		1014	93.5	3320 (3365)	10.85	6.80	18.48	10.49	24.77	13.48	33.46	17.76	40.37	21.20	47.94	24.61	214.27	110.04	
		1011	100.0	112 (114)	1.64	0.93	2.98	1.51	3.92	2.04	5.00	2.66	5.88	3.08	6.77	3.52	14.65	10.98	
		1008	93.5	3469 (3516)	11.14	7.00	18.92	10.86	25.38	13.93	34.30	18.42	41.42	21.99	49.24	25.52	222.30	121.99	
Shoal Point Rd.	В	1005	92.7	3521 (3572)	11.01	7.06	18.73	10.98	25.19	14.08	34.00	18.59	41.11	22.20	48.79	25.77	219.33	117.77	
Lake Ontario	А	1000	92.7	3614 (3665)	11.15	7.15	18.98	11.15	25.62	14.27	34.48	18.84	41.73	22.52	49.54	26.15	222.74	123.70	

6.0 Predevelopment Model

A predevelopment model was chosen to be included to create a baseline model for evaluation of the effect of stormwater management design criteria on the watershed. This predevelopment model included developments either built or approved after the existing condition model used for calibration. Therefore, to best isolate the impacts of stormwater management criteria it was decided to create a base model that included all of the ponds that Cole Engineering was not assigning rating curves for (i.e. the rating curves were provided by the TRCA). This way the results of the stormwater management criteria could be isolated from changes being caused by these additional developments.

The predevelopment model also involved some sub-catchments from the existing 2008 model that were subdivided into several smaller sub-catchments, which better matched the discretization of the future conditions model.

6.1. Land Use

The 2008 land use was updated based on two (2) new subdivisions, Mulberry Meadows (Plans 40M-2404 and 40M-2407) and Pickering Beach Residential (40M-2396) that were developed within the watershed between 2008 and 2010. Mulberry Meadows had two (2) external drainage areas discharging to Carruthers Creek Watershed that were not included in the existing condition model. The VO2 models were provided by the Town for these developments.

6.2. Sub-catchment Delineation

Sub-catchments were delineated based on the subdivision plans provided by the Town and drainage area plans provided by the TRCA.

6.3. Reservoir Routing

The TRCA provided a list of the ponds to be included in the future conditions model (constructed after 2008). A list of these ponds is included in **Appendix C**. The drainage area plans for these ponds were used when delineating sub-catchments as well as for defining land use within these sub-catchments.

6.4. Summary

With the modifications described above, the Carruthers Creek Watershed has been divided into ninetyseven (97) sub-catchments. The input parameters for this model can be found in **Appendix D**. Boundaries and land uses were updated as described above.

Figure PRE-DEV illustrates the Carruthers Creek Watershed with its existing form, sub-catchments, and stormwater management ponds. This model will be used to determine the effect that the stormwater management criteria is having on the flows within the creek.

6.5. Peak Flow Results

The peak flow rates from the pre-development model are summarized below in **Table 6-1**. Aerial reduction factors were applied to the Regional Storm peak flows per MNR standards.

Location	VO2	Node	Aerial	Area			•	eak Flov)	
	ID		Reduction	(ha)	2-	5-yr	10-	25-	50-	100-	Regional
			Factor		yr		yr	yr	yr	yr	Storm
U/S Hwy. 7 –	3096		100.0	408	0.99	1.53	1.92	2.45	2.86	3.28	12.98
W. Tributary	1175		100.0	245	0.58	0.89	1.12	1.43	1.67	1.92	7.60
	3095		100.0	653	1.56	2.41	3.03	3.86	4.51	5.18	20.49
D/S Hwy. 7 – E.	1181		100.0	119	0.41	0.64	0.80	1.03	1.21	1.39	5.73
Tributary	1182		100.0	281	0.57	0.88	1.11	1.41	1.64	1.88	7.21
	1183		100.0	176	0.54	0.83	1.04	1.33	1.55	1.77	7.01
	3103		100.0	576	1.40	2.16	2.72	3.46	4.04	4.64	18.57
D/S 5 th	1179		100.0	95	0.16	0.26	0.34	0.45	0.53	0.63	3.68
Concession – E. Tributary	3102		99.2	702	1.63	2.53	3.19	4.09	4.79	5.52	23.42
mbutary	3101		99.2	796	1.78	2.78	3.52	4.51	5.30	6.11	26.99
U/S Taunton	3094		98.2	1013	2.27	3.59	4.60	5.89	6.91	8.00	35.13
Rd. – Confluence	3098		98.2	989	2.15	3.37	4.29	5.52	6.47	7.48	33.76
connuence	3093	G	98.2	2002	4.42	6.96	8.89	11.41	13.38	15.48	68.89
Taunton Rd.	3092		98.2	2054	4.62	7.27	9.28	11.92	13.97	16.15	71.61
CPR	3087	F	97.1	2156	4.65	7.37	9.47	12.24	14.37	16.64	70.66
U/S Rossland	3728		100.0	81	0.06	0.14	0.25	0.35	0.40	0.45	7.65
Rd.	3086		97.1	2166	4.66	7.37	9.48	12.25	14.38	16.66	70.65
	3082	E	96.3	2247	4.71	7.51	9.69	12.58	14.76	17.08	70.80
D/S Rossland	1152		100.0	37	0.91	1.19	1.37	1.62	1.79	1.97	5.30
Rd Confluence	3078		96.3	2410	4.91	7.89	10.23	13.31	15.59	18.05	71.47
connuence	1071		96.3	2434	4.96	7.97	10.33	13.45	15.76	18.25	72.45
Hwy. 2 E.	1044	D	95.4	2694	5.50	8.84	11.46	14.93	17.49	20.21	86.60
Hwy. 2 W.	1030		100.0	87	0.92	1.34	1.62	1.95	2.21	2.46	11.52
Hwy. 401 E.	1038		94.8	2842	5.79	9.27	12.02	15.89	18.70	21.55	93.40
Hwy. 401 W.	1001/ 1025		100.0	167	2.16	3.19	3.83	4.69	5.30	5.92	23.48
D/S Bayly St.	1019		100.0	296	2.90	4.72	6.08	7.76	8.97	10.17	38.82
	1033	С	94.2	2972	6.02	9.56	12.39	16.26	19.18	22.11	97.89
	1018		94.2	3268	6.64	10.30	13.34	17.52	20.56	23.67	127.41
Cluett Dr.	1014		93.5	3365	6.74	10.43	13.41	17.56	20.66	23.80	129.12
	1011		100.0	119	0.50	1.08	1.70	2.28	2.63	2.98	10.11
	1008		93.5	3514	7.03	10.90	14.02	18.36	21.61	24.93	138.16
Shoal Point Rd.	1005	В	92.7	3569	7.08	11.00	14.14	18.51	21.80	25.18	132.84

Table 6-1 - Simulated Peak Flows Pre-development Condition

Location	VO2	Node	Aerial	Area			P	eak Flov	v (m³/s)	
	ID		Reduction Factor	(ha)	2- yr	5-yr	10- yr	25- yr	50- yr	100- yr	Regional Storm
Lake Ontario	1000	А	92.7	3662	7.15	11.14	14.31	18.76	22.10	25.56	139.26

7.0 Future Scenarios

7.1. Overview

In order to predict the effects that future development will have on Carruthers Creek, two (2) future hydrologic scenarios were created.

The first model is based on the approved Official Plans (OPA) for Durham Region, Pickering, and the Town. The second is a future scenario based on Durham's Regional Official Plan Amendment No. 128 (ROPA 128). ROPA 128 has not yet been approved but would represent a possible ultimate build out scenario for the watershed.

7.2. Approved Official Plan Future Condition

Official plan amendments from the Town, Pickering, and Durham Region were reviewed and used in updating the existing hydrology model to reflect the approved OPA scenario. Changes made were:

- Modification to the land use of the watershed to match the OPA;
- Addition of proposed stormwater management facilities using the criteria outlined in the 2007 watershed report and summarized in **Table 8-1** below; and,
- Alteration of the sub-catchment boundaries and addition of new sub-catchments to reflect the changes that will occur within proposed development and the OPA.

Flows from this scenario will be used to determine the Regulatory floodplain within the watershed. Also, this model provides a benchmark that future proposed development can be compared to, to determine its impacts on flows within the watershed.

7.2.1. Land Use

The land uses assumed for the Ajax Official Plan Amendment are:

- The low density residential was defined as low density residential;
- The medium density residential was defined as medium density residential;
- The high density residential was defined as high density residential;
- The environmental protection areas were defined as natural areas;
- The open space was defined as urban open space;
- The midtown corridor was defined as commercial;
- The prestige employment was defined as commercial;
- The general employment was defined as industrial;
- The school were defined as institutional and areas were estimated;
- Downtown residential was defined as high density residential;

- Employment mixed use was defined as commercial; and,
- Commercial mixed use was defined as commercial.

The land uses assumed for the Pickering Official Plan Amendment are:

- E2 lands were defined as industrial;
- E3 was defined as cemetery;
- The active residential area was defined as golf course; and,
- The country residential areas were assumed to be estate residential.

Employment areas used the same land cover as commercial uses if no more details were available.

Two (2) new subdivisions, Mulberry Meadows (Plans 40M-2404 and 40M-2407) and Pickering Beach Residential (40M-2396) that were developed within the watershed between the years 2008 and 2010 were accounted for. Mulberry Meadows had two (2) external drainage areas discharging to Carruthers Creek Watershed that were not included in the existing condition model. The VO2 models were provided by the Town for these developments.

7.2.2. Sub-catchment Delineation

Given that the predevelopment model was further broken down to reflect this future condition, the subcatchment delineation is consistent with the predevelopment model. **Figure FUT** illustrates the new sub-catchments for the Approved Official Plan Future Condition scenario along with the associated land uses.

7.2.3. Curve Numbers

CN values were adjusted based on the changed land use. Modified CN (CN*) values were calculated and input into the model. A summary of the input parameters for the Approved Official Plan Future Condition model can be found in **Appendix D**.

7.2.4. Reservoir Routing

For areas where the OPA had indicated significant development, a stormwater management pond will be required. Therefore, potential locations of ponds were identified and stage storage rating curves were determined using the stormwater management criteria outlined in the 2007 hydrology update report and summarized in **Table 8-1** below. The locations of these potential ponds are shown on **Figure FUT**. The rating curves for these ponds are summarized in **Appendix H**.

7.2.5. Summary

With the modifications described above, the Carruthers Creek Watershed has been delineated into ninety-seven sub-catchments in the Approved Official Plan Future Condition scenario. Boundaries and land uses within the sub-catchments were also updated as necessary. **Figure FUT** illustrates the Carruthers Creek Watershed with its approved OPA land use, sub-catchments, and stormwater management pond locations.

Peak Flow Results

The peak flow rates from the Approved Official Plan Future Condition using the 2007 stormwater management criteria are summarized below in **Table 7-1**. Aerial reduction factors were applied to the Regional Storm peak flows.

Location	VO2 ID	Node	Aerial	Area			Ре	ak Flow	(m³/s)		
			Reduction Factor	(ha)	2-yr	5-yr	10-yr	25-yr	50-yr	100- yr	Regional Storm
U/S Hwy. 7 –	3096		100.0	408	0.99	1.53	1.92	2.45	2.86	3.28	12.98
W. Tributary	1175		100.0	245	0.58	0.89	1.12	1.43	1.67	1.92	7.60
	3095		100.0	653	1.56	2.41	3.03	3.86	4.51	5.18	20.49
D/S Hwy. 7 –	1181		100.0	119	0.41	0.64	0.80	1.03	1.21	1.39	5.73
E. Tributary	1182		100.0	281	0.57	0.88	1.11	1.41	1.64	1.88	7.21
	1183		100.0	176	0.54	0.83	1.04	1.33	1.55	1.77	7.01
	3103		100.0	576	1.40	2.16	2.72	3.46	4.04	4.64	18.57
D/S 5 th	1179		100.0	95	0.16	0.26	0.34	0.45	0.53	0.63	3.68
Concession – E. Tributary	3102		99.2	702	1.63	2.53	3.19	4.09	4.79	5.52	23.42
E. Hibutury	3101		99.2	796	1.78	2.78	3.52	4.51	5.30	6.11	26.99
U/S Taunton	3094		98.2	1013	2.27	3.59	4.60	5.89	6.91	8.00	35.13
Rd. – Confluence	3098		98.2	989	2.15	3.37	4.29	5.52	6.47	7.48	33.76
connucrice	3093	G	98.2	2002	4.42	6.96	8.89	11.41	13.38	15.48	68.89
Taunton Rd.	3092		98.2	2054	4.62	7.27	9.28	11.92	13.97	16.15	71.61
CPR	3087	F	97.1	2156	4.65	7.37	9.47	12.24	14.37	16.64	70.66
U/S Rossland	3728		100.0	81	0.10	0.14	0.24	0.34	0.42	0.49	8.49
Rd.	3086		97.1	2166	4.66	4.37	9.48	12.25	14.38	16.66	70.65
	3082	E	96.3	2247	4.71	7.51	9.69	12.57	14.74	17.07	70.51
D/S Rossland	1152		100.0	37	0.91	1.19	1.37	1.62	1.79	1.97	5.30
Rd Confluence	3078		96.3	2410	4.91	7.88	10.21	13.28	15.56	18.01	70.72
connucrice	1071		96.3	2434	4.96	7.97	10.32	13.42	15.72	18.20	71.59
Hwy. 2 E.	1044	D	95.4	2694	5.61	8.91	11.49	14.92	17.44	20.11	94.07
Hwy. 2 W.	1030		100.0	87	0.92	1.34	1.62	1.95	2.21	2.46	11.52
Hwy. 401 E.	1038		94.8	2842	5.95	9.40	12.12	15.95	18.73	21.55	100.27
Hwy. 401 W.	1001/ 1025		100.0	167	2.16	3.19	3.83	4.69	5.30	5.92	23.48

Table 7-1 – Simulated Peak Flows Approved Official Plan Future Condition

Location	VO2 ID	Node	Aerial	Area			Ре	ak Flow	(m³/s)		
			Reduction Factor	(ha)	2-yr	5-yr	10-yr	25-yr	50-yr	100- yr	Regional Storm
D/S Bayly St.	1019		100.0	296	2.88	4.65	5.96	7.61	8.79	9.98	38.86
	1033	С	94.2	2972	6.24	9.77	12.58	16.43	19.34	22.24	105.74
	1018		94.2	3268	6.89	10.57	13.58	17.75	20.77	23.85	135.69
Cluett Dr.	1014		93.5	3365	7.00	10.70	13.67	17.82	20.91	24.02	137.11
	1011		100.0	112	0.50	1.08	1.70	2.28	2.63	2.98	10.11
	1008		93.5	3514	7.31	11.19	14.29	18.65	21.90	25.17	146.35
Shoal Point Rd.	1005	В	92.7	3569	7.37	11.31	14.43	18.82	22.12	25.44	140.52
Lake Ontario	1000	А	92.7	3662	7.46	11.47	14.62	19.08	22.47	25.85	146.92

It can be observed that there is an increase in the peak flows for the 2 year through 100 year and the Regional storms downstream. The 2007 update had noted no significant change in Regional flows throughout the watershed with a slight decrease at the southern portion. The difference between the results of the 2007 update and the current results can be attributed to the change in method used for the time to peak calculations. The observation from this is that this watershed appears to be sensitive to timing. Since the Airport Method results in a much greater time to peak than the Bransby-Williams Method there is a more significant change to the timing when a sub-catchment is developed.

Table 7-2 below summarizes the change in flows from the existing condition to the Approved Official Plan Future Condition. The locations of the nodes described below in **Table 7-2** can be found on **Figure FUT**.

Location	VO2 ID	Node	Storm	2008 Existing Condition (m ³ /s)	Approved OP Flow (m³/s)	Change in Are	
						(m³/s/ha)	(%)
			2-yr	4.42	4.42	0.00	0.10%
			5-yr	6.96	6.96	0.00	0.10%
			10-yr	8.89	8.89	0.00	0.10%
U/S Taunton Road - Confluence	3093	G	25-yr	11.42	11.41	-0.01	0.01%
			50-yr	13.41	13.38	-0.03	-0.12%
			100-yr	15.52	15.48	-0.04	-0.16%
			Regional	70.32	68.89	-1.43	-1.94%
			2-yr	4.55	4.65	0.10	2.29%
			5-yr	7.23	7.37	0.14	2.03%
			10-yr	9.28	9.47	0.19	2.14%
CPR	3087	F	25-yr	11.99	12.24	0.25	2.18%
			50-yr	14.09	14.37	0.28	2.08%
			100-yr	16.31	16.64	0.33	2.12%
			Regional	70.12	70.66	0.54	0.86%
U/S Rossland Road	3082	E	2-yr	4.66	4.71	0.05	1.30%

Table 7-2 – Flow Comparison – Approved Official Plan Future Condition to 2008 Existing Condition

						Change in Are	
			5-yr	7.4	7.51	0.11	1.71%
			10-yr	9.55	9.69	0.14	1.69%
			25-yr	12.4	12.57	0.17	1.60%
			50-yr	14.58	14.74	0.16	1.32%
			100-yr	16.92	17.07	0.15	1.11%
			Regional	71.42	70.51	-0.91	-1.05%
			2-yr	5.38	5.61	0.23	4.00%
			5-yr	8.59	8.91	0.32	3.46%
			10-yr	11.17	11.49	0.32	2.60%
Highway 2E	1044	D	25-yr	14.63	14.92	0.29	1.72%
			50-yr	17.28	17.44	0.16	0.66%
			100-yr	20.13	20.11	-0.02	-0.36%
			Regional	82.18	94.07	11.89	14.17%
			2-yr	6.05	6.24	0.19	3.18%
			5-yr	9.56	9.77	0.21	2.23%
			10-yr	12.38	12.58	0.20	1.65%
D/S Bayly Street	1033	С	25-yr	16.28	16.43	0.15	0.96%
			50-yr	19.41	19.34	-0.07	-0.33%
			100-yr	22.64	22.24	-0.40	-1.73%
			Regional	88.13	105.74	17.61	20.02%
			2-yr	7.06	7.37	0.31	4.48%
			5-yr	10.98	11.31	0.33	3.09%
			10-yr	14.08	14.43	0.35	2.57%
Shoal Point Road	1005	В	25-yr	18.59	18.82	0.23	1.32%
			50-yr	22.2	22.12	-0.08	-0.28%
			100-yr	25.77	25.44	-0.33	-1.20%
			Regional	117.77	140.52	22.75	19.42%
			2-yr	7.15	7.46	0.31	4.42%
			5-yr	11.15	11.47	0.32	2.95%
			10-yr	14.27	14.62	0.35	2.54%
Lake Ontario	1000	А	25-yr	18.84	19.08	0.24	1.36%
			50-yr	22.52	22.47	-0.05	-0.14%
			100-yr	26.15	25.85	-0.30	-1.07%
			Regional	123.7	146.92	23.22	18.87%

7.3. Regional Official Plan Amendment 128

The second future condition model is based on the Regional Official Plan Amendment (ROPA) 128. The Approved Official Plan Future Condition scenario was modified to include this additional development in Pickering.

The ROPA 128 Future scenario land use was created using a shape file provided by the Region of Durham. Changes made were:

- Modification to the land use of the watershed to match ROPA 128; and,
- Inclusion of stormwater management ponds for areas where development is to occur under the OPAs and stormwater management ponds will be required. The stormwater management ponds designed were based on the stormwater management criteria developed for the watershed as described in **Table 8-1** below.

7.3.1. Land Use

The land uses within ROPA 128 were defined as follows:

- Residential areas in ROPA 128 were assumed to be medium density;
- The areas designated as "Regional Centre" were defined as commercial; and,
- The areas designated as employment areas were designated as commercial.

The natural areas surrounding the creek that are currently in the Pickering's official plan were maintained for the ROPA condition even though they are not designated in the current ROPA 128 because it is assumed that the buffer surrounding the creek would be maintained.

7.3.2. Sub-catchment Delineation

Sub-catchment delineation was generally kept consistent with that of the future conditions model so that the discretization of the watershed did not affect the flow results when comparing it to the future condition, with minor exceptions. Areas where only a portion of the subcatchment is developed, under ROPA 128 conditions, were split based on the development boundary so that route reservoirs could be included for stormwater management within the development area. If the catchments were not subdivided based on the development boundary the stormwater management ponds would be sized to be controlling some undeveloped land. **Figure ROPA-128** illustrates the sub-catchments for the ROPA 128 future condition scenario model. There are a total of one hundred and three (103) sub-catchments for this model.

7.3.3. Curve Numbers

Curve Numbers (CN) were updated for sub-catchments where appropriate. For the sub-catchments where the land use or the sub-catchment boundary changed significantly the CN was re-calculated. Modified CN (CN*) values were calculated and input into the model. **Appendix D** includes a summary of the input parameters used for the ROPA 128 future model.

7.3.4. Reservoir Routing

Potential pond locations were identified and stage storage rating curves were determined based on the stormwater management criteria outlined in the 2007 watershed report. The locations of these potential ponds are shown on **Figure ROPA-128**.

7.3.5. Summary

With the modifications described above, the Carruthers Creek Watershed has been delineated into one hundred and three (103) sub-catchments in the ROPA 128 Future Condition scenario. Boundaries were adjusted slightly and land uses were changed within several of the sub-catchments.

Figure ROPA-128 illustrates the Carruthers Creek Watershed with its ROPA 128 Future Condition land use, sub-catchments, and stormwater management ponds.

7.3.6. Peak Flow Results

The peak flow rates from the ROPA 128 Future Condition using the 2007 stormwater management criteria as well as the 2011 stormwater management criteria described below in **Section 8.0** are summarized below in **Table 7-3**.

Table 7-4 below summarizes the differences in flows from the ROPA 128 future condition to the 2008 existing condition. An increase for the 2 to 100 year and Regional storm flows for the ROPA 128 future condition was observed throughout the watershed. This represented an approximate increase of 73% for the Regional storm at Lake Ontario. The largest flow increase was observed at Highway 2 East with an increase of 137% for the Regional storm. The large increases in flow when compared to the existing condition peak flows can be attributed to the increase in runoff generated from the significant increase in impervious area, as well as the substantial decrease in the time to peak associated with the developed condition.

Due to the elongated shape of the watershed and the fact that the tributaries are generally all in the upstream area where development is proposed under ROPA 128 a significant flow increase can be expected in the headwater areas of Carruthers Creek.

When modelling the ultimate land use condition, Philips Engineering observed an approximate 50% Regional flow increase in the headwaters of the watershed and a 16% Regional flow increase at Lake Ontario. This ultimate land use condition considered the same development area as ROPA 128. However, the total impervious and directly connected impervious assumptions for the ROPA 128 future condition model were more conservative than those made prior. Philips Engineering assumed a total imperviousness of 50% and a directly connected imperviousness of 30% for the ultimate land use condition. The ROPA 128 model assumed a 90% total and directly connected imperviousness for the commercial areas and a 55% total imperviousness and a 35% directly connected imperviousness for the residential areas. Therefore, the overall imperviousness assumptions for this model area more conservative than those previously made by Philips Engineering in the ultimate condition model. Also, Philips Engineering previously used the Bransby-Williams Method for calculating time to peak within the watershed. As described above the Bransby-Williams Method calculates significantly shorter time to peaks than the Airport Method, which was used in the headwaters of the watershed for this updated model. This significantly longer time to peak for the updated existing condition model would cause a significant change in peak flows between the existing condition and ROPA 128 model, which was observed.

It should be noted that when comparing the peak flows of the ROPA 128 model to the Ultimate Land Use Conditions model by Philips Engineering the Regional peak flows at the very upstream portion of the watershed are fairly consistent. The peak flows further downstream in the watershed are still approximately 20% less than the previous Ultimate Land Use Condition.

 Table 7-3 -- Simulated Peak Flows ROPA 128 Future Condition (Regional Storm without Controls)

Location	VO2 Sub-	Node	Aerial	Area	2-year	2-year	5-year	5-year	e Condition (10-year	10-year	25-year	25-year	50-year	50-year	100-year	100-year	Regional
	catchment		Reduction Factor	(ha)	Peak Flow (2007 SWM	Peak Flow (2011 SWM	Peak Flow (Ex. SWM Criteria)	Peak Flow (2011 SWM	Peak Flow (2007 SWM	Peak Flow (2011 SWM	Peak Flow (m³/s)						
					Criteria) (m³/s)	Criteria) (m³/s)	(m³/s)	Criteria) (m³/s)									
U/S Hwy. 7 – W.	3096		100.0	408	1.58	1.58	2.18	2.18	2.61	2.61	3.85	3.85	4.73	4.73	6.00	6.00	48.80
Tributary	1175		100.0	245	4.71	4.71	6.34	6.34	7.48	7.48	8.92	8.92	10.07	10.07	11.19	11.19	32.71
	3095		100.0	653	2.54	2.54	3.45	3.45	4.12	4.12	6.09	6.09	7.48	7.48	9.51	9.51	80.99
D/S Hwy. 7 – E.	1181		100.0	52	0.22	0.22	0.35	0.35	0.45	0.45	0.58	0.58	0.68	0.68	0.78	0.78	3.44
Tributary	1182		100.0	236	3.33	3.33	4.69	4.69	5.70	5.70	7.05	7.05	8.05	8.05	9.09	9.09	30.69
	1183		100.0	150	2.79	2.79	3.89	3.89	4.68	4.68	5.66	5.66	6.40	6.40	7.20	7.20	20.62
L	3103		100.0	576	2.09	2.09	2.96	2.96	3.61	3.61	5.05	5.05	6.27	6.27	7.81	7.81	61.05
D/S 5 th	1179		100.0	95	0.16	0.16	0.26	0.26	0.34	0.34	0.45	0.45	0.53	0.53	0.63	0.63	3.68
Concession – E. Tributary	3102		99.2	702	2.37	2.37	3.42	3.42	4.19	4.19	5.75	5.75	7.07	7.07	8.63	8.63	60.88
mbutary	3101		99.2	796	2.52	2.52	3.66	3.66	4.51	4.51	6.16	6.16	7.55	7.55	9.16	9.16	62.74
U/S Taunton Rd.	3094		98.2	1013	3.21	3.21	4.47	4.47	5.38	5.38	7.43	7.43	9.00	9.00	10.78	10.78	79.74
– Confluence	3098		98.2	989	2.99	2.99	4.40	4.40	5.45	5.45	7.37	7.37	8.98	8.98	10.80	10.80	69.34
	3093	G	98.2	2002	6.17	6.17	8.80	8.80	10.74	10.74	14.78	14.78	17.97	17.97	21.57	21.57	148.97
Taunton Rd.	3092		98.2	2054	6.43	6.43	9.19	9.19	11.24	11.24	15.43	15.43	18.72	18.72	22.44	22.44	151.31
CPR	3087	F	97.1	2156	6.46	6.46	9.29	9.29	11.43	11.43	15.46	15.46	19.15	19.15	22.96	22.96	158.38
U/S Rossland	3728		100.0	81	0.10	0.07	0.14	0.16	0.24	0.26	0.34	0.35	0.42	0.39	0.49	0.44	8.49
Rd.	3086		97.1	2166	6.46	6.46	9.30	9.30	11.44	11.44	15.77	15.77	19.18	19.18	22.99	22.99	159.09
	3082	E	96.3	2247	6.52	6.53	9.43	9.45	11.68	11.70	16.10	16.13	19.55	19.57	23.41	23.43	163.38
D/S Rossland	1152		100.0	37	0.91	0.91	1.19	1.19	1.37	1.37	1.62	1.62	1.79	1.79	1.97	1.97	5.30
Rd Confluence	3078		96.3	2410	6.74	6.77	9.91	9.93	12.34	12.36	17.04	17.06	20.68	20.71	24.78	24.80	177.51
	1071		96.3	2434	6.81	6.84	10.02	10.04	12.48	12.50	17.23	17.26	20.92	20.94	25.07	25.10	179.03
Hwy. 2 E.	1044	D	95.4	2694	7.58	7.55	11.15	11.07	13.90	13.77	19.05	18.92	23.05	22.91	27.52	27.34	195.02
Hwy. 2 W.	1030		100.0	87	0.92	0.92	1.34	1.34	1.62	1.62	1.95	1.95	2.21	2.21	2.46	2.46	11.52
Hwy. 401 E.	1038		94.8	2842	7.98	7.93	11.77	11.66	14.84	14.60	20.29	20.14	24.49	24.34	29.11	28.91	190.07
Hwy. 401 W.	1001/1025		100.0	167	2.16	2.16	3.19	3.19	3.83	3.83	4.69	4.69	5.30	5.30	5.92	5.92	23.48
D/S Bayly St.	1019		100.0	296	2.88	2.88	4.65	4.65	5.96	5.96	7.61	7.61	8.79	8.79	9.98	9.98	38.86
	1033	С	94.2	2972	8.28	8.21	12.18	12.04	15.27	15.07	20.83	20.66	25.11	24.93	29.77	29.56	189.95
	1018		94.2	3268	9.04	8.92	13.27	13.07	16.63	16.36	22.44	22.22	27.05	26.81	32.20	31.91	210.96
Cluett Dr.	1014		93.5	3365	9.12	9.01	13.38	13.12	16.77	16.45	22.63	22.39	27.17	26.92	32.24	31.94	206.38
	1011		100.0	112	0.50	0.50	1.08	1.08	1.70	1.70	2.28	2.28	2.63	2.63	2.98	2.98	10.11
	1008		93.5	3514	9.50	9.36	13.97	13.68	17.51	17.17	23.57	23.31	28.29	28.01	33.59	33.26	212.75
Shoal Point Rd.	1005	В	92.7	3569	9.56	9.40	14.06	13.76	17.64	17.26	23.76	23.44	28.52	28.21	33.81	33.46	210.35
Lake Ontario	1000	А	92.7	3662	9.69	9.50	14.26	13.93	17.91	17.50	24.11	23.79	28.92	28.60	34.28	33.93	213.60

Location	VO2 ID	Node	Storm	2008 Existing Condition (m ³ /s)	ROPA 128 Flow (Ex. SWM Criteria) (m ³ /s)	ROPA 128 Flow (Prop. SWM Criteria) (m ³ /s)	Change in Flow Pe Crite		Change in Flow Per Crite	r Area (Prop. SWM eria)
							(m³/s/ha)	(%)	(m³/s/ha)	(%)
			2-yr	4.42	6.17	6.17	1.75	39.66%	1.75	39.66%
			5-yr	6.96	8.80	8.80	1.84	26.55%	1.84	26.55%
			10-yr	8.89	10.74	10.74	1.85	20.94%	1.85	20.94%
U/S Taunton Road - Confluence	3093	G	25-yr	11.42	14.78	14.78	3.36	29.58%	3.36	29.58%
			50-yr	13.41	17.97	17.97	4.56	34.11%	4.56	34.11%
			100-yr	15.52	21.57	21.57	6.05	39.11%	6.05	39.11%
			Regional	70.32	148.97	148.97	78.65	112.06%	78.65	112.06%
			2-yr	4.55	6.46	6.46	1.91	42.02%	1.91	42.02%
			5-yr	7.23	9.29	9.29	2.06	28.58%	2.06	28.58%
			10-yr	9.28	11.43	11.43	2.15	23.28%	2.15	23.28%
CPR	3087	F	25-yr	11.99	15.76	15.76	3.77	31.52%	3.77	31.52%
			50-yr	14.09	19.15	19.15	5.06	36.02%	5.06	36.02%
			100-yr	16.31	22.96	22.96	6.65	40.89%	6.65	40.89%
			Regional	70.12	158.38	158.38	88.26	126.08%	88.26	126.08%
			2-yr	4.66	6.52	6.53	1.86	40.12%	1.87	40.42%
			5-yr	7.4	9.43	9.45	2.03	27.72%	2.05	27.97%
			10-yr	9.55	11.68	11.70	2.13	22.53%	2.15	22.78%
U/S Rossland Road	3082	E	25-yr	12.4	16.10	16.13	3.70	30.16%	3.73	30.33%
			50-yr	14.58	19.55	19.57	4.97	34.38%	4.99	34.51%
			100-yr	16.92	23.41	23.43	6.49	38.66%	6.51	38.80%
			Regional	71.42	163.38	163.38	91.96	129.27%	91.96	129.27%
			2-yr	5.38	7.58	7.55	2.20	40.49%	2.17	39.93%
			5-yr	8.59	11.15	11.07	2.56	29.45%	2.48	28.48%
			10-yr	11.17	13.90	13.77	2.73	24.10%	2.60	22.98%
Highway 2E	1044	D	25-yr	14.63	19.05	18.92	4.42	29.86%	4.29	28.96%
			50-yr	17.28	23.05	22.91	5.77	33.06%	5.63	32.25%
			100-yr	20.13	27.52	27.34	7.39	36.38%	7.21	35.47%
			Regional	82.18	195.02	195.02	112.84	136.69%	112.84	136.69%
			2-yr	6.05	8.28	8.21	2.23	36.89%	2.16	35.75%
			5-yr	9.56	12.18	12.04	2.62	27.42%	2.48	25.96%
			10-yr	12.38	15.27	15.07	2.89	23.39%	2.69	21.78%
D/S Bayly Street	1033	С	25-yr	16.28	20.83	20.66	4.55	27.99%	4.38	26.93%
			50-yr	19.41	25.11	24.93	5.70	29.40%	5.52	28.50%
			100-yr	22.64	29.77	29.56	7.13	31.52%	6.92	30.61%
			Regional	88.13	189.95	189.95	101.82	115.61%	101.82	115.61%

Table 7-4 – Flow Comparison – ROPA 128 Condition to 2008 Existing Condition

							Change in Flow Pe Crite		Change in Flow Per Crite	
			2-yr	7.06	9.56	9.40	2.50	35.51%	2.34	33.24%
			5-yr	10.98	14.06	13.76	3.08	28.16%	2.78	25.41%
			10-yr	14.08	17.64	17.26	3.56	25.40%	3.18	22.71%
Shoal Point Road	1005	В	25-yr	18.59	23.76	23.44	5.17	27.92%	4.85	26.20%
			50-yr	22.2	28.52	28.21	6.32	28.57%	6.01	27.19%
			100-yr	25.77	33.81	33.46	8.04	31.32%	7.69	29.96%
			Regional	117.77	210.35	210.35	92.58	78.76%	92.58	78.76%
			2-yr	7.15	9.69	9.50	2.54	35.58%	2.35	33.00%
			5-yr	11.15	14.26	13.93	3.11	27.96%	2.78	25.00%
			10-yr	14.27	17.91	17.50	3.64	25.58%	3.23	22.71%
Lake Ontario	1000	А	25-yr	18.84	24.11	23.79	5.27	28.07%	4.95	26.38%
			50-yr	22.52	28.92	28.60	6.40	28.52%	6.08	27.09%
			100-yr	26.15	34.28	33.93	8.13	31.20%	7.78	29.84%
			Regional	123.7	213.60	213.60	89.90	72.82%	89.90	72.82%

Carruthers Creek Flood Management and Analysis Hydrology Update Report

8.0 Stormwater Management Criteria Considerations

8.1. Approved Official Plan

For future development modelling Cole Engineering used the stormwater management criteria developed in the 2007 report as summarized below in **Table 8-1**. It should be noted that node 9a is associated with the tributary running through catchment 152 on **Figure-EX08**. The locations of these proposed ponds are shown on **Figure FUT**. The rating curves developed for these ponds are available in **Appendix H**.

Facility Location/Receiving System	5-Yeai	r	25-Yea	r	100-Year		
	Unitary Storage Volume (m ³ /Impervious ha)	Unitary Discharge (m ³ /s/ha)	Unitary Storage Volume (m ³ /Impervious ha)	Unitary Discharge (m ³ /s/ha)	Unitary Storage Volume (m ³ /Impervious ha)	Unitary Discharge (m ³ /s/ha)	
Node 9a	190	0.023	300	0.047	350	0.094	
Carruthers Main Branch	500	0.006	650	0.012	800	0.026	

Table 8-1 – Philips Engineering Stormwater Mangement Criteria

Table 8-2 below summarizes the flows within the creek at key nodes when the stormwater management criteria from the 2007 report is applied. It can be seen by the flow increases for the 2 through 100 year storms that using the stormwater management criteria outlined by Philips Engineering does not provide a high enough level of protection within the main branch of the creek.

Location	VO2 ID	Node	Storm	Pre- development	Approved OP Flow	Change in F Area	
				Condition	(m³/s)	(m ³ /s/ha)	(%)
			2-yr	4.42	4.42	0.00	0.00%
			5-yr	6.96	6.96	0.00	0.00%
U/S Taunton			10-yr	8.89	8.89	0.00	0.00%
Road -	3093	G	25-yr	11.41	11.41	0.00	0.00%
Confluence			50-yr	13.38	13.38	0.00	0.00%
			100-yr	15.48	15.48	0.00	0.00%
			Reg.	68.89	68.89	0.00	0.00%
			2-yr	4.65	4.65	0.00	0.00%
			5-yr	7.37	7.37	0.00	0.00%
			10-yr	9.47	9.47	0.00	0.00%
CPR	3087	F	25-yr	12.24	12.24	0.00	0.00%
			50-yr	14.37	14.37	0.00	0.00%
			100-yr	16.64	16.64	0.00	0.00%
			Reg.	70.66	70.66	0.00	0.00%
U/S Rossland	3082	E	2-yr	4.71	4.71	0.00	0.00%
Road			5-yr	7.51	7.51	0.00	0.00%

Table 8-2 – Flow Comparison – Approved Official Plan Future Condition to Pre-development Condition

Carruthers Creek Watershed

Hydrology Update Report

Location	VO2 ID	Node	Storm	Pre- development	Approved OP Flow	Change in F Area				
				Condition	(m³/s)	(m ³ /s/ha)	(%)			
			10-yr	9.69	9.69	0.00	0.00%			
			25-yr	12.58	12.57	-0.01	-0.08%			
			50-yr	14.76	14.74	-0.02	-0.14%			
			100-yr	17.08	17.07	-0.01	-0.06%			
			Reg.	70.8	70.51	-0.29	-0.41%			
			2-yr	5.5	5.61	0.11	2.00%			
			5-yr	8.84	8.91	0.07	0.79%			
			10-yr	11.46	11.49	0.03	0.26%			
Highway 2E	1044	D	25-yr	14.93	14.92	-0.01	-0.07%			
			50-yr	17.49	17.44	-0.05	-0.29%			
			100-yr	20.21	20.11	-0.10	-0.49%			
			Reg.	86.6	94.07	7.47	8.63%			
			2-yr	6.02	6.24	0.22	3.65%			
			5-yr	9.56	9.77	0.21	2.20%			
			10-yr	12.39	12.58	0.19	1.53%			
D/S Bayly Street	1033	С	25-yr	16.26	16.43	0.17	1.05%			
			50-yr	19.18	19.34	0.16	0.83%			
			100-yr	22.11	22.24	0.13	0.59%			
			Reg.	97.89	105.74	7.85	8.02%			
			2-yr	7.08	7.37	0.29	4.10%			
			5-yr	11	11.31	0.31	2.82%			
			10-yr	14.14	14.43	0.29	2.05%			
Shoal Point Road	1005	В	25-yr	18.51	18.82	0.31	1.67%			
Nodu		В -		b .	Б	50-yr	21.8	22.12	0.32	1.47%
			100-yr	25.18	25.44	0.26	1.03%			
			Reg.	132.84	140.52	7.68	5.78%			
			2-yr	7.15	7.46	0.31	4.34%			
			5-yr	11.14	11.47	0.33	2.96%			
			10-yr	14.31	14.62	0.31	2.17%			
Lake Ontario	1000	А	25-yr	18.76	19.08	0.32	1.71%			
			50-yr	22.1	22.47	0.37	1.67%			
			100-yr	25.56	25.85	0.29	1.13%			
			Reg.	139.26	146.92	7.66	5.50%			

As shown below in **Table 8-1**, Philips Engineering had outlined a separate set of stormwater management criteria for Node 9a than the main branch of Carruthers Creek. These criteria are not as strict as the criteria set out for the main branch of the creek. It was determined that based on the location of the observed flow increases the criteria for tributary 9a is likely contributing to this condition. As such, it was determined to use the criteria established for the main branch of Carruthers Creek for the areas associated with tributary 9a. The results of this analysis are shown below in **Table 8-3**.

Based on the observed results, it appears as though the main branch criteria would be more effective at maintaining the stream flows in the southern reaches of Carruthers Creek. The results are detailed **Appendix H** for reference.

Location	VO2	Node	Storm	Pre-	Approved OP Flow with new Stormwater	Change in F	
	ID			development Condition	Management Criteria (m ³ /s)	Area	
				·		(m³/s/ha)	(%)
			2-yr	4.42	4.42	0.00	0.00%
			5-yr	6.96	6.96	0.00	0.00%
U/S Taunton			10-yr	8.89	8.89	0.00	0.00%
Road - Confluence	3093	G	25-yr	11.41	11.41	0.00	0.00%
connuence			50-yr	13.38	13.38	0.00	0.00%
			100-yr	15.48	15.48	0.00	0.00%
			Reg.	68.89	68.89	0.00	0.00%
			2-yr	4.65	4.65	0.00	0.00%
			5-yr	7.37	7.37	0.00	0.00%
			10-yr	9.47	9.47	0.00	0.00%
CPR	3087	F	25-yr	12.24	12.24	0.00	0.00%
			50-yr	14.37	14.37	0.00	0.00%
			100-yr	16.64	16.64	0.00	0.00%
			Reg.	70.66	70.66	0.00	0.00%
			2-yr	4.71	4.72	0.01	0.21%
			5-yr	7.51	7.53	0.02	0.27%
			10-yr	9.69	9.71	0.02	0.21%
U/S Rossland Road	3082	E	25-yr	12.58	12.59	7.01	0.08%
nouu			50-yr	14.76	14.77	0.01	0.07%
			100-yr	17.08	17.09	0.01	0.06%
			Reg.	70.8	70.51	-0.29	-0.41%
			2-yr	5.5	5.67	0.17	3.09%
			5-yr	8.84	8.97	0.13	1.47%
			10-yr	11.46	11.55	0.09	0.79%
Highway 2E	1044	D	25-yr	14.93	14.96	0.03	0.20%
			50-yr	17.49	17.54	0.05	0.29%
			100-yr	20.21	20.23	0.02	0.10%
			Reg.	86.6	94.07	7.47	-1.53%
D/S Bayly Street	1033	С	2-yr	6.02	6.27	0.25	4.15%
			5-yr	9.56	9.79	0.23	2.41%
			10-yr	12.39	12.57	0.18	1.45%
			25-yr	16.26	16.4	0.14	0.86%
			50-yr	19.18	19.35	0.17	0.89%
	1	1				I	I

Table 8-3 – Flow Comparison – Approved Official Plan Future Condition to Pre-development Condition with New Stormwater Management Criteria

Hydrology Update Report

Location	VO2 ID	Node	Storm	Pre- development	Approved OP Flow with new Stormwater	Change in Flow Per Area		
				Condition	Management Criteria (m ³ /s)	(m³/s/ha)	(%)	
			100-yr	22.11	22.32	0.21	0.95%	
			Reg.	97.89	105.74	7.85	8.02%	
			2-yr	7.08	7.32	0.24	3.39%	
			5-yr	11	11.2	0.20	1.82%	
			10-yr	14.14	14.26	0.12	0.85%	
Shoal Point Road	1005	В	25-yr	18.51	18.63	0.12	0.65%	
			50-yr	21.8	21.95	0.15	0.69%	
			100-yr	25.18	25.33	0.15	0.60%	
			Reg.	132.84	140.52	7.68	5.78%	
			2-yr	7.15	7.38	0.23	3.22%	
			5-yr	11.14	11.32	0.18	1.62%	
			10-yr	14.31	14.42	0.11	0.77%	
Lake Ontario	1000	А	25-yr	18.76	18.85	0.09	0.48%	
			50-yr	22.1	22.24	0.14	0.63%	
			100-yr	25.56	25.68	0.12	0.47%	
			Reg.	139.26	146.92	7.66	5.50%	

Therefore, given the sensitivity of the downstream reaches of Carruthers Creek, it would be advisable to consider applying the main branch peak flow criteria as summarized below in **Table 8-4** for all areas of the watershed. These criteria should be applied to all developments outlined in the currently approved official plans moving forward that have not yet been built or approved. This still results in a small increase in flows for the 2 year storm. The maximum increase in the 2 year storm, which is approximately 4%, is observed downstream of Bayly Street. This is considered minor and is within the error of the model and should be considered acceptable.

Facility	5-Year		25-Yea	r	100-Year		
Location/Receiving System	Unitary Storage Volume (m ³ /Impervious ha)	Unitary Discharge (m ³ /s/ha)	Unitary Storage Volume (m ³ /Impervious ha)	Unitary Discharge (m ³ /s/ha)	Unitary Storage Volume (m ³ /Impervious ha)	Unitary Discharge (m ³ /s/ha)	
Carruthers Main Branch	500	0.006	650	0.012	800	0.026	

In **Table 8-2** above it can be seen that there is an increase in flows for the Regional Storm in the downstream portion of the watershed. Therefore, it is recommended that the TRCA look into a mechanism to implement Regional controls. For regulatory purposes the hydraulic modeling will use the flows that incorporate this increase in flow.

8.2. Regional Official Plan Amendment 128

The stormwater management ponds for the ROPA 128 model were sized according to the stormwater management criteria summarized in **Table 8-1** above.

Table 8-5 below following demonstrates that there are significant flow increases within the main branch of the creek for the 2 to 100 year and the Regional storm Regional Storm for the ROPA 128 future conditions model were observed. These are likely a result of a marked reduction in time to peak within the northern portions of the watershed attributed to development. Therefore, Regional controls are likely required for this proposed development.

The Town of Ajax Carruthers Creek Watershed

Location	VO2 ID	D development with 2007 SWM		ROPA 128 Flow with 2011 SWM	Change in Flow Per Area with 2007 SWM Criteria		Change in Flow Per Area with 2011 SWM Criteria			
				Condition	Criteria (m ³ /s)	Criteria (m ³ /s)	(m³/s/ha)	(%)	(m³/s/ha)	(%)
			2-yr	4.42	6.167	6.17	1.75	39.52%	1.75	39.52%
			5-yr	6.96	8.799	8.80	1.84	26.42%	1.84	26.42%
U/S Taunton			10-yr	8.89	10.741	10.74	1.85	20.82%	1.85	20.82%
Road -	3093	G	25-yr	11.41	14.783	14.78	3.37	29.56%	3.37	29.56%
Confluence			50-yr	13.38	17.966	17.97	4.59	34.28%	4.59	34.28%
			100-yr	15.48	21.568	21.57	6.09	39.33%	6.09	39.33%
			Reg.	68.89	148.97	148.97	80.08	116.24%	80.08	116.24%
			2-yr	4.65	6.456	6.46	1.81	38.84%	1.81	38.84%
			5-yr	7.37	9.288	9.29	1.92	26.02%	1.92	26.02%
			10-yr	9.47	11.43	11.43	1.96	20.70%	1.96	20.70%
CPR	3087	F	25-yr	12.24	15.755	15.76	3.52	28.72%	3.52	28.72%
			50-yr	14.37	19.147	19.15	4.78	33.24%	4.78	33.24%
			100-yr	16.64	22.958	22.96	6.32	37.97%	6.32	37.97%
			Reg.	70.66	158.38	158.38	87.72	124.14%	87.72	124.14%
			2-yr	4.71	6.515	6.53	1.81	38.32%	1.82	38.62%
			5-yr	7.51	9.43	9.45	1.92	25.57%	1.94	25.82%
			10-yr	9.69	11.676	11.70	1.99	20.50%	2.01	20.73%
U/S Rossland Road	3082	E	25-yr	12.58	16.104	16.13	3.53	28.11%	3.56	28.28%
			50-yr	14.76	19.549	19.57	4.81	32.63%	4.83	32.75%
			100-yr	17.08	23.41	23.43	6.34	37.14%	6.36	37.27%
			Reg.	70.8	163.38	163.38	92.87	131.71%	92.87	131.71%
Highway 2E	1044	D	2-yr	5.5	7.578	7.55	2.08	37.78%	2.05	37.24%
			5-yr	8.84	11.149	11.07	2.30	25.98%	2.22	25.03%
			10-yr	11.46	13.898	13.77	2.50	21.91%	2.37	20.82%
			25-yr	14.93	19.048	18.92	4.16	27.92%	4.03	27.04%

The	Town	of Ajax	
-----	------	---------	--

Carruthers Creek Watershed

Location	VO2 ID	Node	Storm	Pre- development	ROPA 128 Flow with 2007 SWM	ROPA 128 Flow with 2011 SWM	Change in Flow Per Area with 2007 SWM Criteria		Change in Flow Per Area with 2011 SWM Criteria	
				Condition	Criteria (m ³ /s)	Criteria (m ³ /s)	(m³/s/ha)	(%)	(m³/s/ha)	(%)
			50-yr	17.49	23.052	22.91	5.60	32.10%	5.46	31.30%
			100-yr	20.21	27.524	27.34	7.37	36.60%	7.19	35.69%
			Reg.	86.6	195.02	195.02	108.01	124.14%	108.01	124.14%
			2-yr	6.02	8.279	8.21	2.27	37.75%	2.20	36.61%
			5-yr	9.56	12.177	12.04	2.63	27.51%	2.49	26.05%
			10-yr	12.39	15.271	15.07	2.90	23.45%	2.70	21.84%
D/S Bayly Street	1033	С	25-yr	16.26	20.829	20.66	4.60	28.34%	4.43	27.28%
			50-yr	19.18	25.108	24.93	5.97	31.18%	5.79	30.27%
			100-yr	22.11	29.765	29.56	7.76	35.23%	7.55	34.31%
			Reg.	97.89	189.95	189.95	91.55	93.04%	91.55	93.04%
			2-yr	7.08	9.559	9.40	2.49	35.21%	2.33	32.94%
	1005		5-yr	11	14.06	13.76	3.07	27.93%	2.77	25.19%
		В	10-yr	14.14	17.642	17.26	3.52	24.94%	3.14	22.26%
Shoal Point Road			25-yr	18.51	23.76	23.44	5.28	28.57%	4.96	26.85%
			50-yr	21.8	28.518	28.21	6.75	31.00%	6.44	29.60%
			100-yr	25.18	33.813	33.46	8.67	34.50%	8.32	33.10%
			Reg.	132.84	210.35	210.35	77.11	57.87%	77.11	57.87%
			2-yr	7.15	9.686	9.50	2.55	35.66%	2.36	33.08%
			5-yr	11.14	14.256	13.93	3.13	28.09%	2.80	25.12%
			10-yr	14.31	17.905	17.50	3.62	25.30%	3.21	22.44%
Lake Ontario	1000	А	25-yr	18.76	24.108	23.79	5.39	28.78%	5.07	27.08%
			50-yr	22.1	28.918	28.60	6.85	31.03%	6.53	29.57%
			100-yr	25.56	34.282	33.93	8.74	34.23%	8.39	32.83%
			Reg.	139.26	213.6	213.60	73.95	52.95%	73.95	52.95%

The Town of Ajax Carruthers Creek Watershed

9.0 Conclusion

Cole Engineering has undertaken the review and update of the hydrology model and prepared an accompanying report as part of the ongoing Municipal Class Environmental Assessment of the Carruthers Creek Watershed. In general the approach taken by Philips Engineering for the 2007 hydrology update was acceptable. However, it was determined that the time to peak calculations should be reconsidered using a more appropriate method as well as some other minor revisions.

Through flow comparison, sensitivity analysis, and calibration, it was determined that the MTO recommended method would be used to calculate the flows for this hydrology model update. Therefore, the Airport Method was used for sub-catchments where the runoff coefficient was less than 0.40 and the Bransby-Williams Method was used for sub-catchments where the runoff coefficient was greater than 0.40. This modelling produced results that closely matched the measured data available for the watershed. The peak flow results were lower than the peak flows previously reported for the watershed.

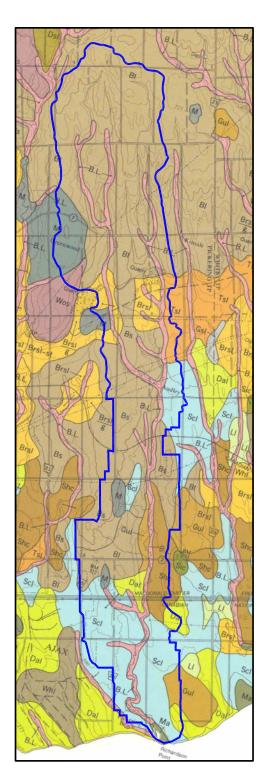
The stormwater management criteria established for the watershed seems acceptable with the exception of the specific criteria established for Node 9a. It is recommended to consider using the flow criteria established for the main branch of the creek throughout all areas of the watershed in order to minimize increases in flows in the southern portions of Carruthers Creek.

Additionally, the stormwater management criteria should be reconsidered for future development lands within the Carruthers Creek Watershed north of Taunton Road since increases in flows were observed for the Regional Official Plan Amendment 128 for the 2 year through 100 year storms.

Increases in Regional flows were observed for the Approved Official Plan Future Condition model and considerable increases in flows were observed for the ROPA 128 model, which is considered full build out of the watershed. Therefore, Regional controls should also be investigated as a mechanism to prevent increases in Regional flows within the downstream portions of the watershed. Further detailed study would be required to determine the affects of any approved land use north of Taunton Road.

Yours truly,

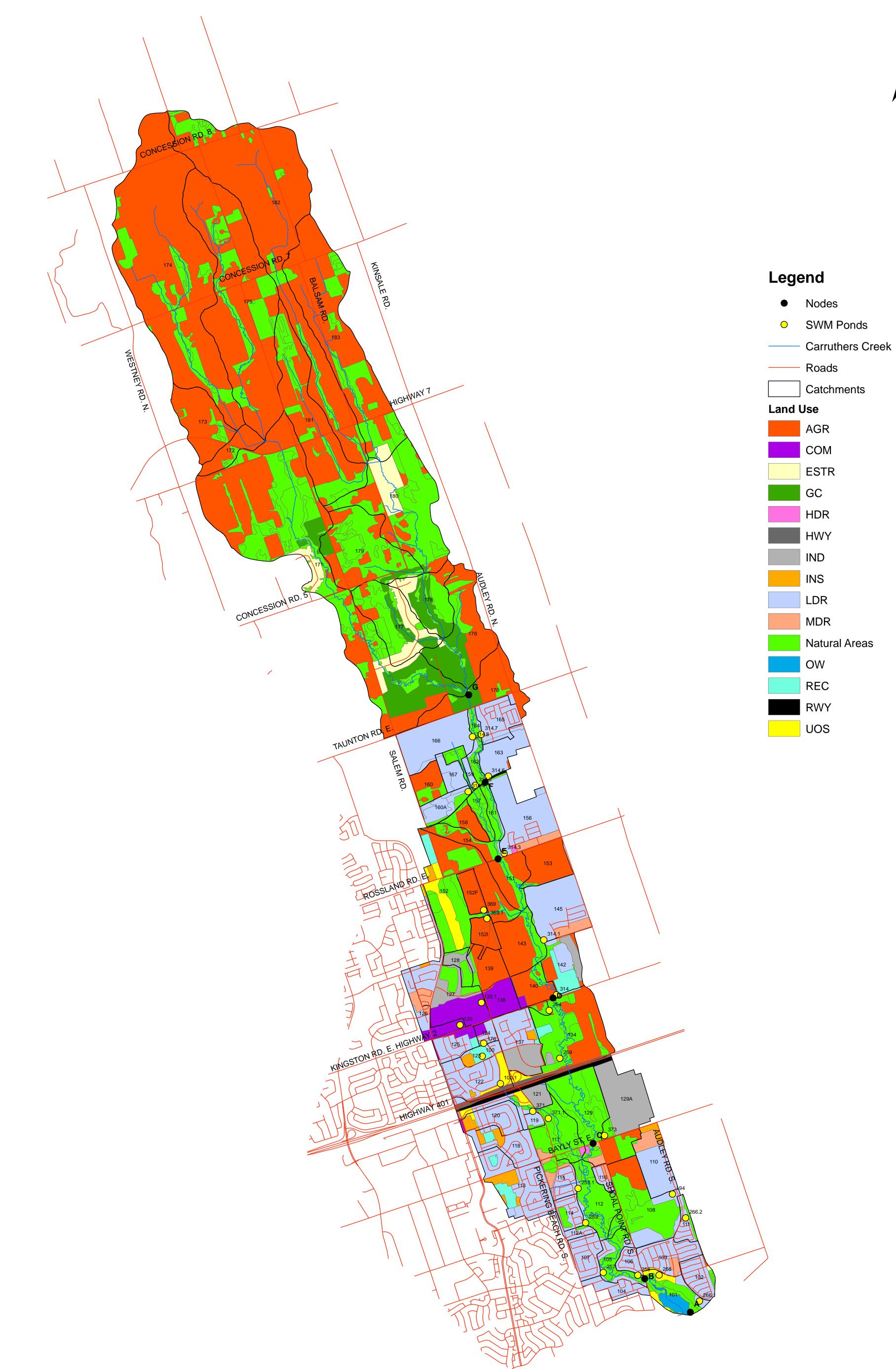
COLE ENGINEERING GROUP LTD.

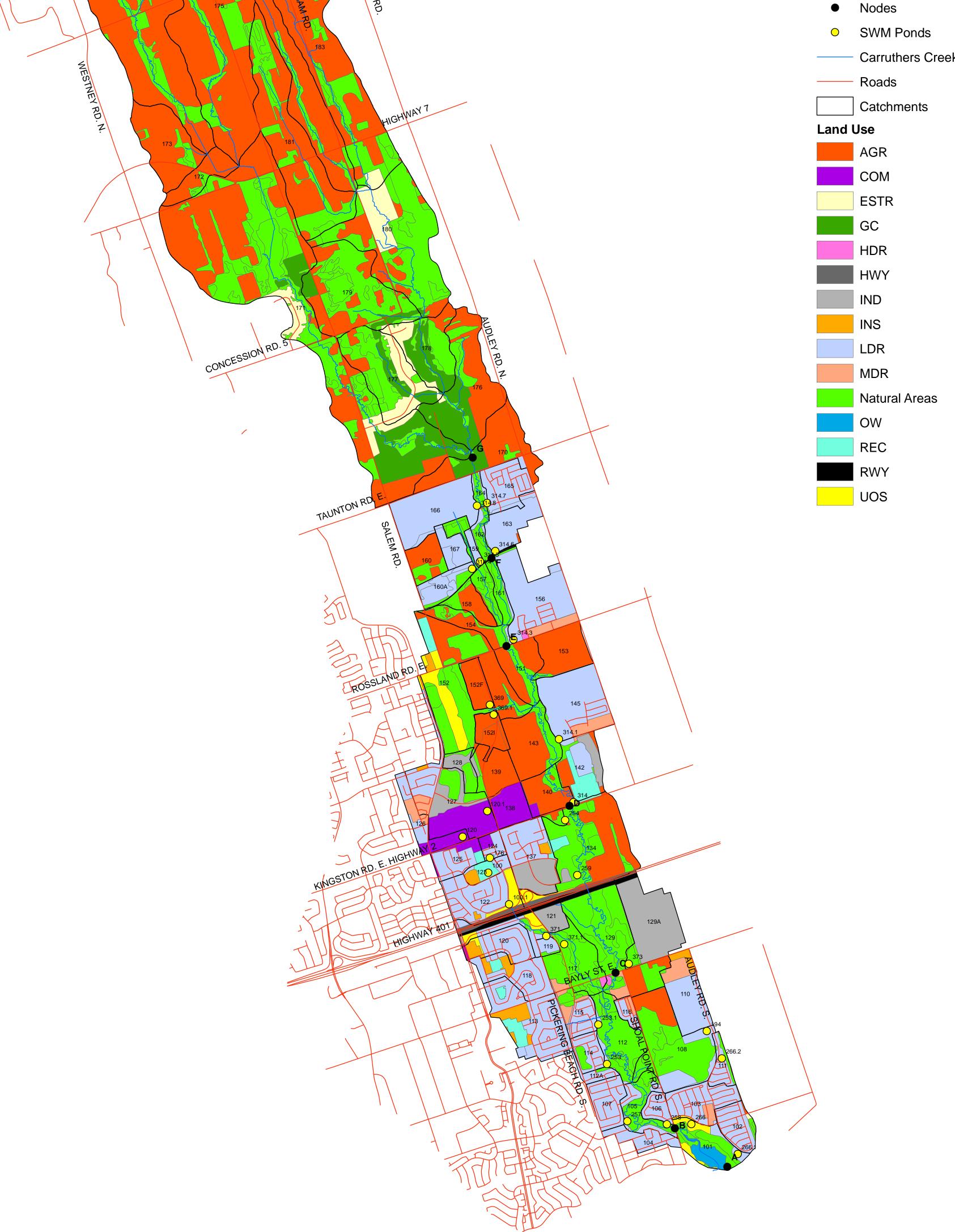

Patricia Osika, E.I.T. Water Resources Designer

NO.

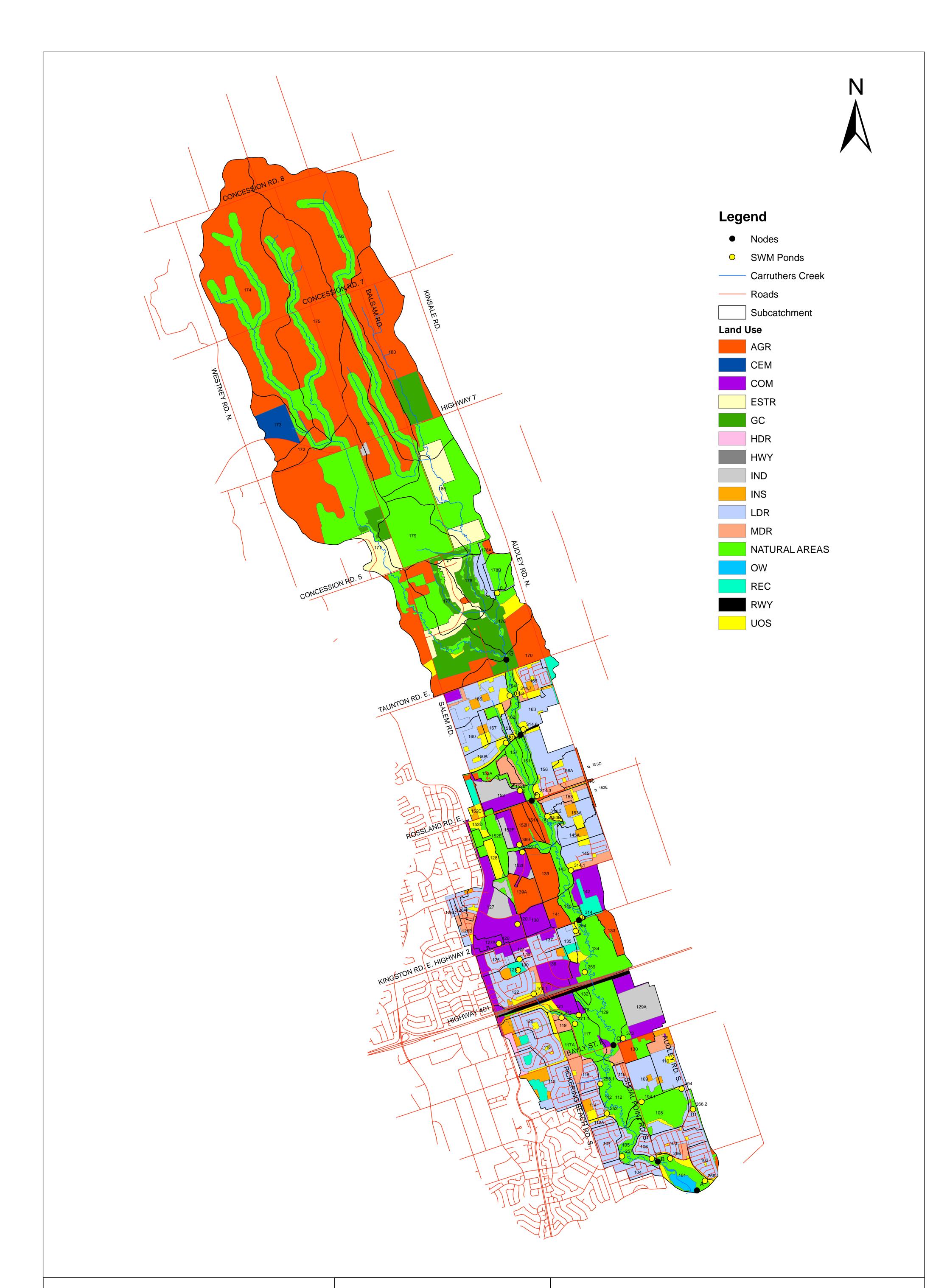
CARRUTHERS CREEK SOILS MAP

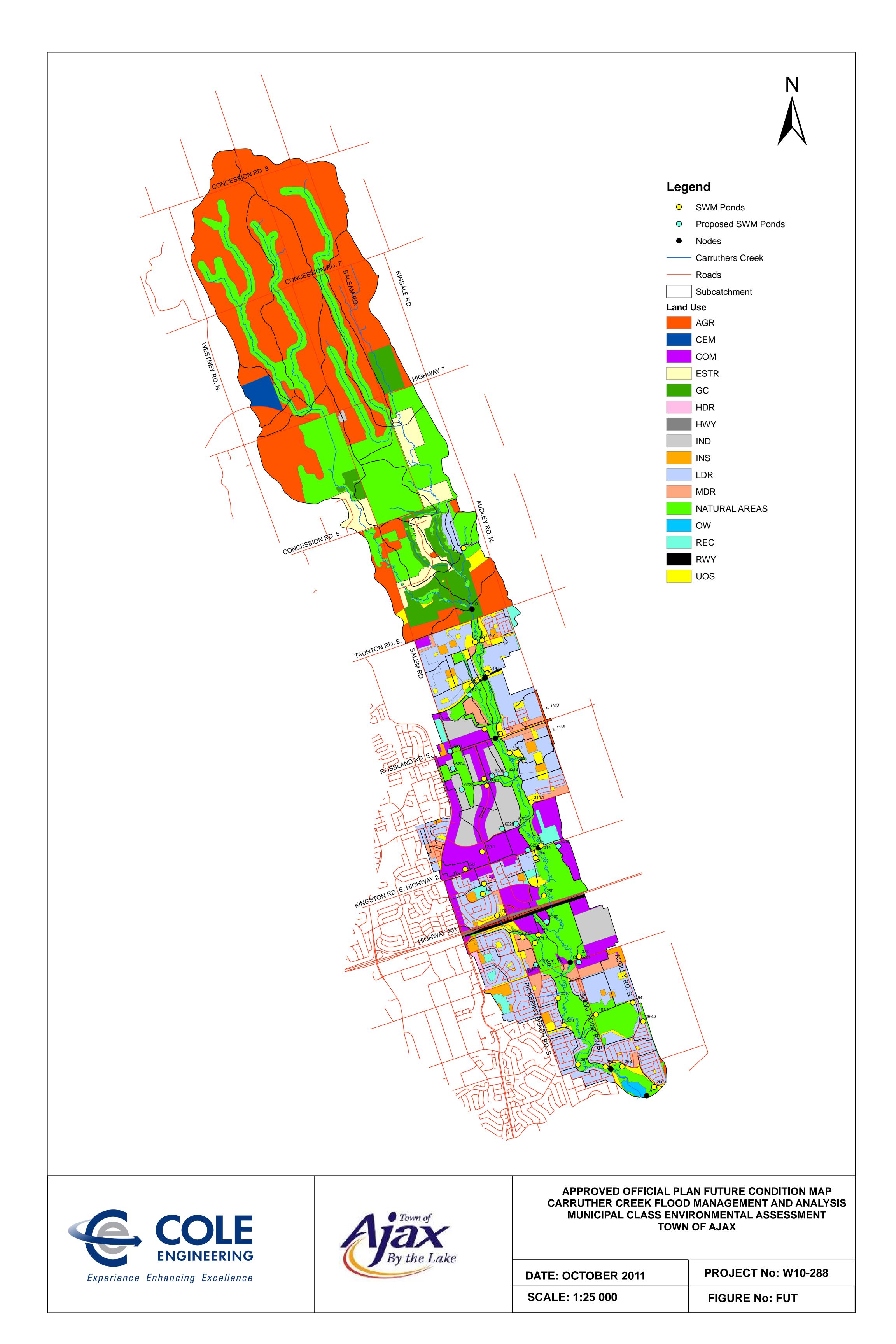
-			
MAP SYMBOL	SOIL TYPE	PARENT MATERIALS	DRAINAGE
BI	BONDHEAD LOAM	CALCAREOUS GREY LOAM & SANDY LOAM TILL	GOOD
Bs	BONDHEAD SANDY LOAM	CALCAREOUS GREY LOAM & SANDY LOAM TILL	GOOD
MI	MILLIKEN LOAM	CALCAREOUS BROWN LOAM TILL	IMPERFECT
Brsl	BRIGHTON SANDY LOAM	CALCAREOUS SAND	GOOD
Wos	WOBURN SANDY LOAM	CALCAREOUS BROWN LOAM TILL	GOOD
Scl	SMITHFIELD CLAY LOAM	CALCAREOUS CLAY	IMPERFECT
Tsl	TECUMSETH SANDY LOAM	CALCAREOUS SAND	IMPERFECT
Dal	DARLINGTON LOAM	CLAY LOAM TILL DERIVED FROM LIMESTONE AND SHALE	GOOD
Gul	GUERIN LOAM	CALCAREOUS GREY LOAM AND SANDY LOAM TILL	IMPERFECT
Shc	SCHOMBERG CLAY LOAM	CALCAREOUS CLAY	GOOD
B.L.	BOTTOM LAND	RECENT ALLUVIAL DEPOSITS	VARIABLE
М	MUCK	WELL DECOMPOSED ORGANIC DEPOSITS	VERY POOR
Ма	MARSH	SATURATED MINERAL SOIL WITH MARSH VEGETATION	VERY POOR
Brsl	BRIGHTON GRAVELLY SANDY LOAM	CALCAREOUS SAND	GOOD
BrsI-st	BRIGHTON SANDY LOAM STONY PHASE	CALCAREOUS SAND	GOOD

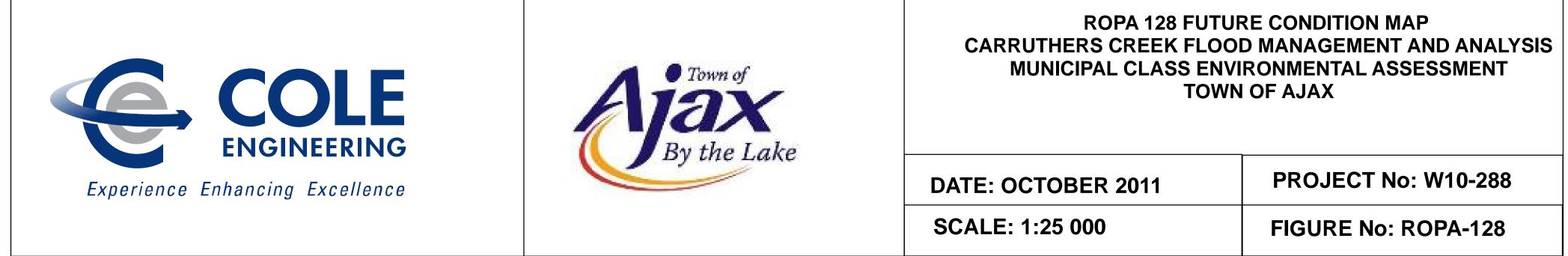

LEGEND


SOILS MAP

CARRUTHERS CREEK FLOOD MANAGEMENT AND ANALYSIS MUNICIPAL CLASS ENVIRONMENTAL ASSESSMENT TOWN OF AJAX


DATE:	OCTOBER 2011	PROJECT No.: W10-288
SCALE:	N.T.S.	FIGURE No.: SM




COLE ENGINEERING	Town of By the Lake	EXISTING 2008 CONDITIONS MAP CARRUTHERS CREEK FLOOD MANAGEMENT AND ANALYSIS MUNICIPAL CLASS ENVIRONMENTAL ASSESSMENT TOWN OF AJAX				
Experience Enhancing Excellence	Dy the Lake	DATE: OCTOBER 2011	PROJECT No: W10-288			
		SCALE: 1:25 000	FIGURE No: EX08			

APPENDIX A Background Information

Background Information

The background information collected and used as reference for this update includes:

- Reports:
 - Philips Engineering, "Carruthers Creek Hydrology Update for Toronto and Region Conservation Authority", March 2007;
 - R.J. Burnside & Associates Ltd., "Summary Report for Digital Floodplain Mapping: Carruthers Creek and Miller Creek Watersheds", August 2007;
 - Sabourin Kimble & Associates Ltd., "Stormwater Management Design Brief Pickering Beach Residential Town of Ajax", October 2007;
 - MMM Group, "Stormwater Management Plan Mulberry Meadows Town of Ajax, Audley Developments Limited 10-07043-050-W01", April 2009; and,
 - R.J. Burnside & Associates Ltd., Summary Report for Digital Floodplain Mapping: Carruthers Creek Spill Analysis", December 2009.
- Memoranda and Correspondence:
 - City of Pickering, "Summary of Major Residential Applications and Building Permits", July 2010;
 - City of Pickering, "Summary of Non-Residential Applications and Building Permits", July 2010;
 - Philips Engineering, Memorandum dated July 26, 2006, Re: Carruthers Creek Visual-OTTHYMO Model User's Guide; and,
 - Town of Ajax, Carruthers Creek Development Info, received from Vanessa Lorrain
 - TRCA, Carruthers Creek SWM Pond Summary, received from Nick Lorrain.
- Drawings and Data:
 - TRCA, Carruthers Creek Watershed ESRI shape files for:
 - 1 metre contours;
 - Watercourses;
 - Roads;
 - Watershed and sub-catchment boundaries;
 - 2002 land use;
 - 2005 land use;
 - Soil types;
 - Crest of slope,
 - Engineered Floodline;
 - ESA Carruthers;
 - Estimated Floodline;
 - Fauna;
 - Flora;
 - Meander belt;

- Natural cover 2008;
- Regulation limit;
- Regulation limit waterfront;
- Target system;
- Vegetation communities;
- Waterbodies;
- Wetlands areas of interference; and,
- Stormwater management ponds.
- TRCA, Streamflow data for 2007-2008:
 - Carruthers Creek @ Achilles Road, and,
 - Carruthers Creek @ Bayly Street.
- TRCA, Precipitation Data, 2007-2008:
 - Claremont CA gauge;
 - Brock West Landfill gauge, and,
 - Ajax Works Yard gauge.
- TRCA, Design Storms:
 - AES 1, 6, 12, and 24 hour design storms; and,
 - SCS 12 hour design storms.
- MTO, Regional Storm.
- CLOCA, Precipitation Data, 2007-2008:
 - Lynde Creek Near Whitby gauge;
 - Lynde Creek Near Kinsale gauge; and,
 - Green Wood Mushroom Farm gauge.
- Agriculture and Agri-Food Canada, Soils of Ontario County: Soil Survey Report No. 23, 1979:
 - Official Plans and Amendments.
- Town of Ajax, Subdivision Plans, 2010.
- Town of Ajax, Official Plan, December 2009.
- City of Pickering, Official Plan, December 2009.
- Durham Region, Official Plan, 1993.
- Durham Region, Regional Official Plan Amendment No. 128, 2010:
 - Models.
- TRCA, Carruthers Creek HEC-RAS Hydraulic Model, Last updated April 2010 by R.J. Burnside & Associates.
- TRCA, Carruthers Creek VO2 Hydrology Model, Last updated August 2007 by Phillips Engineering Ltd.
- Drainage Area Plans for the following developments:
 - Dillon Consulting, "Lakeside Subdivision Phase 3A Storm Drainage Plan", May 1999;
 - Cole, Sherman, "Storm Drainage Plan:, August 1981;

- Sabourin Kimble & Associates Ltd., "Storm Drainage Plan Audley Road Lands SA-2003-08", May 2004;
- The Odan / Detech Group, "Loblaws Companies East Distribution Warehouse", May 2004;
- MMM Group "Proposed Drainage Area Plan Mulberry Meadows", March 2009;
- Sabourin Kimble & Associates Ltd., "Preliminary Storm Drainage Boundary – Blocks I, J and K Beechridge – Industrial", December 2010;
- Sabourin Kimble & Associates Ltd., "Storm Drainage Plan Central Guthrie Industrial Lands Phase 2 18T-99010", December 2009;
- Sabourin Kimble & Associates Ltd., "Storm Drainage Plan North Guthrie Industrial Lands Phase 1 18T-99010", December 2009;
- Sernas Associates, "OTTHYMO Drainage Area Plan Durham Centre Expansion RIO-CAN Real Estate Investment Trust", March 2006;
- C.C. Tatham & Associates Ltd., "Post-Development Drainage Plan Kinsale Properties Ltd. Golf Course City of Pickering", November 2008;
- Sernas Associates, "Deer Creek Estates Proposed Drainage";
- Sabourin Kimble & Associates Ltd., "Overall Storm Drainage Plan Runnymede Development Corporation", October 2007; and,
- MMM Group, "Functional Storm Drainage Plan Ajax Audley Developments Limited", August 2007.

APPENDIX B Runoff Coefficients

Runoff Coefficient Calculations

							Soil Type					
		Bondhead (Bs)	Brighton (Brsl)	Wobunr (Wo)	Tecumseth (Tsl)	Bondhead (BI)	Miliken (MI)	Darlington (Dal)	Guerin (Gul)	Smithfield (Scl)	Schomberg (Shc)	Muck (M)
	Agricultural	0.22	0.22	0.22	0.22	0.35	0.35	0.35	0.35	0.55	0.55	5 0.30
	Golf Course	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
	Natural Areas	0.08	0.08	0.08	0.08	0.25	0.25	0.25	0.25	0.35	0.35	5 0.30
	ESTR	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	5 0.45
	LDR	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
	MDR	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64
Land Use	Commercial	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Land Use	Paved Areas	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	5 0.95
	HDR	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	5 0.75
	Industrial	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
	Institutional	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	5 0.75
	Railway	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	Highway	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	5 0.95
	Recreational	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20

Subcatchment	Runoff Coefficient
105	0.44
108	0.42
112	0.37
117	0.41
129	0.39
134	0.45
139	0.34
140	0.38
143	0.33
151	0.33
152	0.24
152F	0.44
1521	0.35
153	0.29
154	0.24
157	0.09
158	0.20
160	0.18
161	0.26
162	0.21
164	0.23
170	0.42
171	0.26
172	0.34
173	0.34
174	0.33
175	0.33
176	0.26
177	0.22
178	0.20
179	0.16
180	0.24
181	0.31
182	0.25
183	0.32

NASHYD Runoff Coefficients – 2008 Condition

APPENDIX C TRCA Pond Information

Carruthers Creek Stormwater Management Pond Information

		Storage-Disc	harge Curve
		Discharge	Storage
Pond #	100.0	(m3/s)	(ha.m)
Name	Danovilla Park Pond	0.0000	0.0000
Status	Built	1.3500	0.1280
Type of Control	Quality - Online Storage	1.5800	0.2790
Drainage Area (ha)	26.93	1.9000	0.6950
Imperviousness	54%, 34%	3.1100	0.8150
Development Type	Medium Density Residential		
Drainage from Subcatchment	125, 123		
NHYD in Model	100		
In Scenario	All		
		Discharge	Storage
Pond #	100.1	(m3/s)	(ha.m)
Name	Danovilla South Pond	0.0000	0.0000
Status	Built	0.3000	0.1660
Type of Control	Quantity - Online Storage	0.3900	0.3010
Drainage Area (ha)	156.03 in ex, 166.68 in future, pre-dev, and ROPA	0.4500	0.6620
Imperviousness	47%	3.8300	0.9500
Development Type	Medium Density Residential	7.1400	1.2300
Drainage from Subcatchment	1122 and upstream		
NHYD in Model	1001		
In Scenario	All		
D 1 <i>''</i>	100.0	Discharge	Storage
Pond #	120.0	(m3/s)	(ha.m)
Name	Chapters Pond	0.0000	0.0000
Status	Built	0.0100	0.2500
Type of Control	Quality, Quantity and Erosion	0.0200	0.1630
Drainage Area (ha)	19.57 in existing, 20.91 in future, pre-dev, ROPA	0.0300	0.3230
Imperviousness	various	0.0400	0.5000
Development Type	Commercial, Residential	0.1600	0.6910
Drainage from Subcatchment	126 in existing model, 127A and 126B minor and 126C minor in future, pre-dev, and ROPA		
	100	0.2300	0.8960
NHYD in Model In Scenario	120	0.3000	1.1160
in Scenario	All		
		Discharge	Storage
Pond #	120.1 and 120.2	(m3/s)	(ha.m)
Name	Costco Pond	0.0000	0.0000
Status	Built	0.0050	0.0264
Type of Control	Quality, Quantity and Erosion	0.0160	0.1796
Drainage Area (ha)	60.4 in existing, 65.9 in future, pre-dev, and ROPA	0.0220	0.3678
Imperviousness	81%, 47%	0.0270	0.5894
Development Type	Commercial	0.2520	0.8424
Drainage from Subcatchment	127 and 126A minor	0.6600	1.1269
NHYD in Model	1201	1.1860	1.4427
In Scenario	Existing 2008, Future, Pre-Dev, ROPA		

Pond # 176.0 Discharge Storage Name Heritage Market 0.0000 0.0000 Status Built 0.0000 0.0000 Status Built 0.0000 0.0000 Diange Area (ha) 7.3 0.7873 0.0823 Imperviousness 73% 0.1119 0.7873 0.0823 Development Type Commercial and High Density Residential 1.3423 0.1119 Development Type Commercial and High Density Residential (m3/s) (ha.m) Development Type All			D : 1	0
Name Heritage Market 0.0000 0.0000 Status Built 0.1000 0.0283 Type of Control Quality, Quantity and Erosion 0.3690 0.0537 Discharge Area (ha) 7.3 0.0623 0.0623 Imperviousness 73% 0.0623 0.0623 Development Type Commercial and High Density Residential 0.7673 0.0623 Name Commercial and High Density Residential 0.7673 0.0623 NHYD in Model 176 1.3423 0.1119 Name John Boddy - Warbler Swamp 0.0000 0.0000 Status Built 0.0000 0.0330 0.2280 Type of Control Quality, Quantity and Erosion 0.6100 0.5170 Drainage Area (ha) 32.7 3.4000 0.66649 Drainage from Subcatchment 110 NHYD in Model 194 In Scenario All 0.0000 0.0000 Status Not Built 0.0000 0.0000 Drainage Area (ha) 22 0	Pond #	176.0	Discharge	Storage
Status Built 0.1000 0.0265 Type of Control Quality, Quantity and Erosion 0.3860 0.0337 Drainage Area (ha) 7.3 0.7873 0.0823 Imperviouness 73% 1.3423 0.1119 Development Type Commercial and High Density Residential 1.3423 0.1119 Drainage from Subcatchment 1124 1.3423 0.1119 Name John Boddy - Warbler Swamp 0.0000 0.0000 Status Built 0.0390 0.2280 Type of Control Quality, Quantity and Erosion 0.6100 0.5170 Drainage Area (ha) 32.7 3.4000 0.6649 Type of Control Quality, Quantity and Erosion 0.6100 0.5170 Drainage Area (ha) 32.7 3.4000 0.6549 Drainage from Subcatchment 110 0.0000 0.0000 Name Lajler Lands - Warbler Swamp 0.0000 0.0000 Status Not Built 0.0000 0.0000 0.0000 Type of Control				
Type of Control Cuality, Quanity and Erosion 0.7.850 0.0.850 Drainage Area (ha) 7.3 0.7873 0.0823 Imperviousness 73% 0.7873 0.0823 Development Type Commercial and High Density Residential 1.3423 0.1119 Development Type Commercial and High Density Residential 1.3423 0.1119 Development Type Commercial and High Density Residential 1.3423 0.1119 Discharge Storage (m3/s) (fm.a.m) Name John Boddy - Warbler Swamp 0.0000 0.0000 Status Built 0.0190 0.6100 0.5170 Drainage from Subcathment 110 3.4000 0.6649 Imperviousness 53% 5.2200 0.8468 Development Type Medium Density Residential 0.0000 0.0000 Drainage from Subcathment 110 14 0.0000 0.0000 NHYD in Model 194.1 0.0000 0.0520 0.3000 Discharge Storage (m3/s) <		-		
Drainage Area (ha) 7.3 0.7873 0.0823 Imperviousness 73% 1.3423 0.1119 Development Type Commercial and High Density Residential 1.3423 0.1119 Daranage from Subcatchment 1124 1144 1144 NHYD in Model 176 114 114 Name John Boddy - Warbler Swamp Discharge Storage Yape of Control Quality, Quanity and Erosion 0.6100 0.5170 Drainage from Subcatchment 110 0.0000 0.0000 0.0000 Status 22.7 3.4000 0.6649 5.2200 0.8468 Development Type Medium Density Residential Drainage from Subcatchment 110 110 114 114 114 1152 1152 1152 1152 1152 1152 1152 1152 1152 1152 1152 1162 1162 1162 1162 1162 1162 1162 1162 1162 1162 1162 1162 1162 1162 11				
Imperviousness 73%. 0.0000 0.0000 Development Type Commercial and High Density Residential 1.3423 0.1119 Drainage from Subcatchment 1124 1124 1.3423 0.1119 Name 1124 176 1.3423 0.1119 Name All 1124 1124 1.3423 0.1119 Pond # 194.0 (m3/s) (ma.m) 0.0000 0.0000 Status Built 0.0110 0.0390 0.2280 0.6100 0.0000 0.0000				
Development Type Commercial and High Density Residential Intervention Drainage from Subcatchment 1124 NHYD In Model 176 In Scenario All Pond # 194.0 Name John Boddy - Warbler Swamp Status Built Outore Control Quality, Quantity and Erosion Drainage Area (ha) 32.7 Imperviousness 53% Development Type Medium Density Residential Drainage from Subcatchment 110 NHYD In Model 194.1 In Scenario All Pond # 194.1 Name Lajfer Lands - Warbler Swamp Status Not Built Pond # 194.1 Name Lajfer Lands - Warbler Swamp Status Not Built Pond # 194.1 Name Lajfer Lands - Warbler Swamp Status Not Built Imperviousness 34% Development Type Medium Density Residential Drainage from Subcatchment 109 NHYD In Model 194.1 <td></td> <td></td> <td></td> <td></td>				
Drainage from Subcatchment 1124 NHVD in Model 176 In Scenario All Pond # 194.0 Name John Boddy - Warbler Swamp Status Built Type of Control Quality, Quantity and Erosion Drainage Area (ha) 32.7 Drainage Area (ha) 32.7 Drainage Area (ha) 32.7 Drainage from Subcatchment 110 NHVD in Model 194.1 In Scenario All Pond # 194.1 Name Lajter Lands - Warbler Swamp Not Built 0.05200 Neme Lajter Lands - Warbler Swamp Not Built 0.0520 Name Lajter Lands - Warbler Swamp Not Built 0.0520 Upperviousness 34% Development Type Medium Density Residential Drainage from Subcatchment 109 NHYD in Model 1941 In Scenario Storage (m3/s) Pond # Storage (m3/s) Name <td></td> <td></td> <td>1.3423</td> <td>0.1119</td>			1.3423	0.1119
NHYD in Model 176 In Scenario All Pond # 194.0 Name John Bodly - Warbler Swamp Journage Area (ha) 32.7 Drainage Area (ha) 32.7 Drainage Area (ha) 32.7 Drainage Area (ha) 32.7 Drainage from Subcatchment 110 NHYD in Model 194.1 In Scenario All Pond # 194.1 Name Lajter Lands - Warbler Swamp Not Built 0.0000 0.0000 Status Not Built 0.0520 0.3000 Type of Control Quality and Erosion 1.920 0.3500 Drainage from Subcatchment 109 1.920 0.3600 Name Storage (m3/s) (fna.m)		• <i>·</i>		
In Scenario All Pond # 194.0 [m3/s] [ma/s] [ma/s]				
Pond #194.0DischargeStorageNameJohn Boddy - Warbler Swamp0.00000.0000StatusBuilt0.03900.2280Type of ControlQuality, Quantity and Erosion0.61000.5170Drainage Area (ha)32.73.40000.6649Development TypeMedium Density Residential5.22000.8468Development TypeMedium Density Residential5.22000.8468Drainage from Subcatchment110110110NHYD in Model194194.1(ma.m)NameLajter Lands - Warbler Swamp0.00000.0000StatusNot Built0.05200.3000Type of ControlQuality and Erosion1.92000.3500Drainage from Subcatchment1091.92000.3500Drainage from Subcatchment1091.92000.3500Drainage from Subcatchment1091.92000.3500Drainage from Subcatchment1091.92000.3500Drainage from Subcatchment1091.92000.3500Drainage from Subcatchment1090.00000.0000StatusBuilt0.00000.0000StatusBuilt0.05000.1926Pond #25.31.40.00000.0000StatusBuilt0.05000.1926Drainage from Subcatchment114114HYD in Model253114114				
Pond # 194.0 (m3/s) (max) <	In Scenario	All		
Pond # 194.0 (m3/s) (max) <			Discharge	Storage
Name John Boddy - Warbler Swamp 0.0000 0.0000 Status Built 0.0390 0.2280 Type of Control Quality, Quantity and Erosion 0.6100 0.5170 Drainage Area (ha) 32.7 3.4000 0.6649 Imperviousness 53% 5.2200 0.8468 Development Type Medium Density Residential 5.2200 0.8468 Drainage from Subcatchment 110 114 110 NHYD in Model 194 1 110 Name Lajter Lands - Warbler Swamp 0.0000 0.0000 Status Not Built 0.0000 0.0000 0.0000 Ype of Control Quality and Erosion 1.9200 0.3500 1.9200 0.3500 Drainage Area (ha) 22 Imperviousness 34% Development Type Medium Density Residential 0.0000 0.0000 0.0520 0.3000 Imperviousness 34% Development Type Medium Density Residential 1.9200 0.3500 1.9200 0.3500 0.0000	Pond #	194.0	-	-
Status Built 0.0390 0.2280 Type of Control Quality, Quantity and Erosion 0.6100 0.5170 Drainage Area (ha) 32.7 3.4000 0.6649 Imperviousness 53% 5.2200 0.8468 Development Type Medium Density Residential 5.2200 0.8468 Drainage from Subcatchment 110 5.2200 0.8468 NHYD in Model 194.1 5.200 0.6000 In Scenario All 0.0000 0.0000 0.0000 Name Lajter Lands - Warbler Swamp 0.0520 0.3000 Status Not Built 0.0520 0.3000 Type of Control Quality and Erosion 1.9200 0.3500 Drainage Area (ha) 22 Imperviousness 34% Imperviousness 4% Development Type Medium Density Residential Discharge fm3/s) (fm3/s) In Scenario Evture, Pre-Dev, ROPA 0.0000 0.0000 0.0000 Status Built 0.0000 0.0000	Name	John Boddy - Warbler Swamp		
Type of Control Quality, Quantity and Erosion 0.6100 0.5170 Drainage Area (ha) 32.7 3.4000 0.6649 Imperviousness 53% 5.2200 0.8468 Development Type Medium Density Residential 5.2200 0.8468 Drainage from Subcatchment 110 5.2200 0.8468 NHYD in Model 194 1 5.2200 0.8468 In Scenario All Discharge Storage Pond # 194.1 (m3/s) (fn.am) Name Lajter Lands - Warbler Swamp 0.0000 0.0000 Status Not Built 0.0520 0.3000 Type of Control Quality and Erosion 1.9200 0.3500 Drainage from Subcatchment 109	Status	Built		
Drainage Area (ha) 32.7 3.4000 0.6649 Imperviousness 53% 5.2200 0.8468 Development Type Medium Density Residential 5.2200 0.8468 Drainage from Subcatchment 110 114 110 NHYD in Model 194 110 111 Name All Discharge Storage Pond # 194.1 (m3/s) (ha.m) Name Lajter Lands - Warbler Swamp 0.0000 0.0000 Status Not Built 0.0000 0.0520 0.3000 Type of Control Quality and Erosion 1.9200 0.3500 Drainage from Subcatchment 109 1.9200 0.3500 Drainage from Subcatchment 109 1.9200 0.3500 NHYD in Model 1941 1 1 1 1.9200 0.3500 Name Carruthers Creek Residential Phase I - South Pond 0.0000 0.0000 0.0000 Status Built 0.3500 0.1926 0.9900 0.2000	Type of Control	Quality, Quantity and Erosion		
Imperviousness53%InterviousnessDevelopment TypeMedium Density ResidentialDrainage from Subcatchment110NHYD in Model194In ScenarioAllPond #194.1NameLajter Lands - Warbler SwampNot Built0.0000Otodout 0.0000StatusNot BuiltDevelopment TypeMedium Density ResidentialDrainage Area (ha)22Imperviousness34%Development TypeMedium Density ResidentialDrainage from Subcatchment109NHYD in Model1941In ScenarioFuture, Pre-Dev, ROPAPond #253.0NameCarruthers Creek Residential Phase I - South PondNameQuality and ErosionStatus0.0000Name6.0000Pond #253.0Name0.0000Status0.01124Puper of ControlQuality and ErosionDischargeStorage (m3/s) (ha.m)0.00000.00000.05000.19260.99000.2000Drainage Area (ha)13.4Imperviousness53%Development TypeMedium Density ResidentialDrainage Area (ha)13.4Imperviousness53%Development TypeMedium Density ResidentialDrainage from Subcatchment114NHYD in Model253				
Development Type Drainage from SubcatchmentMedium Density ResidentialDischorDrainage from Subcatchment110NHYD in Model194In ScenarioAllPond #194.1NameLajter Lands - Warbler SwampStatusNot BuiltType of ControlQuality and ErosionDrainage Area (ha)22Imperviousness34%Development TypeMedium Density ResidentialDrainage from Subcatchment109NHYD in Model1941In ScenarioFuture, Pre-Dev, ROPAPond #253.0NameCarruthers Creek Residential Phase I - South PondStatusUittNameStatusPond #13.4Imperviousness53%Development TypeMedium Density ResidentialDrainage Area (ha)13.4Imperviousness53%Development TypeMedium Density ResidentialDrainage Area (ha)13.4Imperviousness53%Development TypeMedium Density ResidentialDrainage Area (ha)13.4Imperviousness53%Development TypeMedium Density ResidentialDrainage from Subcatchment114NtYD in Model253		53%		
Drainage from Subcatchment 110 NHYD in Model 194 In Scenario All Pond # 194.1 Name Lajter Lands - Warbler Swamp Status Not Built Operation Subcatchment Lajter Lands - Warbler Swamp Status Not Built Status Not Built Development Type Medium Density Residential Drainage from Subcatchment 109 NHYD in Model 194.1 In Scenario Status Pond # Scenario Portinage Area (ha) 22 Imperviousness 34% Development Type Medium Density Residential Drainage from Subcatchment 109 NHYD in Model 1941 In Scenario Storage Pond # Zs3.0 Name Carruthers Creek Residential Phase I - South Name Built Pond Status Status Built Type of Control Quality and Erosion D.9900 <td></td> <td></td> <td>0.2200</td> <td>0.0400</td>			0.2200	0.0400
NHYD in Model In Scenario194 AllIn Scenario194 AllIn ScenarioImage: Storage (m3/s)Pond # Name194.1 Lajter Lands - Warbler SwampDischarge (m3/s)Storage (m3/s)Name StatusNot Built Quality and Erosion0.00000.0000Type of Control Drainage Area (ha)Quality and Erosion1.92000.3500Drainage Area (ha) Drainage from Subcatchment22 Medium Density Residential1.92000.3500NHYD in Model In Scenario1941 Future, Pre-Dev, ROPADischarge (m3/s)Storage (m3/s)Pond # Name Status253.0 BuiltDischargeStorage (m3/s)(ha.m)Name Pond # Name253.0 Built0.05000.1926 0.99000.2000Status Type of Control BuiltQuality and Erosion0.05000.1926 0.99000.2000Drainage Area (ha) Built13.4 Imperviousness53% Sevelopment Type0.99000.2000Drainage from Subcatchment HyD in Model114 L14LitterLitterLitterName Drainage Area (ha)13.4 LitterLitterLitterLitterDischarge Status53%LitterLitterLitterDrainage from Subcatchment Drainage from Subcatchment114 LitterLitterLitterDrainage from Subcatchment114 LitterLitterLitterDrainage from Subcatchment114 LitterLitterLitterDrainage from Subcatchment <t< td=""><td></td><td></td><td></td><td></td></t<>				
In Scenario All Eigen Storage (m3/s) (ha.m) Name 194.1 (atjer Lands - Warbler Swamp 0.0000 0.0000 Status Not Built Ouality and Erosion 0.0520 0.3000 1.9200 0.3500 Drainage Area (ha) 22 Imperviousness 34% Development Type Medium Density Residential Drainage from Subcatchment 109 NHYD in Model 1941 In Scenario Euture, Pre-Dev, ROPA Discharge Storage (m3/s) (ha.m) Name 253.0 (m3/s) (ha.m) Name 253.0 (m3/s) (ha.m) Status Built 0.0000 0.0000 0.0520 0.3000 1.9200 0.3500 Discharge Storage (m3/s) (ha.m) 0.0000 0.0000 0.0500 0.1926 0.9900 0.2000 0.0500 0.1926 0.9900 0.2000 Drainage Area (ha) 13.4 Imperviousness 53% Development Type Medium Density Residential Drainage from Subcatchment 114 NHYD in Model 253	-			
Pond #194.1DischargeStorageNameLajter Lands - Warbler Swamp0.00000.0000StatusNot Built0.00000.0000Type of ControlQuality and Erosion1.92000.3500Drainage Area (ha)221.92000.3500Drainage from Subcatchment10919411941In ScenarioFuture, Pre-Dev, ROPADischargeStoragePond #253.0Carruthers Creek Residential Phase I - South Pond0.00000.0000StatusBuilt0.00000.0000StatusStorage0.00000.0000NameCarruthers Creek Residential Phase I - South Pond0.00000.0000StatusBuilt0.00000.0000StatusBuilt0.00000.0000Drainage Area (ha)13.40.99000.2000Drainage Area (ha)13.4114Luerton PresidentialNerviousness53%Luerton PresidentialLuerton PresidentialNerviousness53%Luerton PresidentialLuerton PresidentialDrainage from Subcatchment114Luerton PresidentialLuerton PresidentialNHYD in Model253StorageLuerton PresidentialNerviousness53%Luerton PresidentialLuerton PresidentialDrainage from Subcatchment114Luerton PresidentialLuerton PresidentialDrainage from Subcatchment114Luerton PresidentialLuerton PresidentialDrainage from Subcatchment11				
Pond # 194.1 (m3/s) (ha.m) Name Lajter Lands - Warbler Swamp 0.0000 0.0000 Status Not Built 0.0520 0.3000 Type of Control Quality and Erosion 1.9200 0.3500 Drainage Area (ha) 22 1.9200 0.3500 Imperviousness 34% 194.1 1.9200 0.3500 Development Type Medium Density Residential 1.9200 0.3500 NHYD in Model 1941 1941 1941 1941 In Scenario Future, Pre-Dev, ROPA Discharge Storage Pond # 253.0 (m3/s) (ha.m) Name Carruthers Creek Residential Phase I - South Pond 0.0000 0.0000 Status Built 0.0500 0.1926 0.9900 0.2000 Type of Control Quality and Erosion 0.9900 0.2000 0.9900 0.2000 Drainage Area (ha) 13.4 Imperviousness 53% 0.9900 0.2000 Drainage from Subcatchment				
NameLajter Lands - Warbler Swamp(III.SI)(III.SI)(III.SI)NameLajter Lands - Warbler Swamp0.00000.0000StatusNot Built0.05200.3000Type of ControlQuality and Erosion1.92000.3500Drainage Area (ha)221.92000.3500Development TypeMedium Density Residential1.92000.3500Drainage from Subcatchment1091.9411.941In ScenarioFuture, Pre-Dev, ROPADischargeStoragePond #253.0(ma./r)0.00000.0000StatusBuilt0.00000.0000StatusBuilt0.00000.0000Type of ControlQuality and Erosion0.05000.1926Dye of ControlQuality and Erosion0.99000.2000Drainage Area (ha)13.41.41.41.4Imperviousness53%Later Heisidential1.4Prainage from Subcatchment1142531.4			Discharge	Storage
StatusNot Built0.00000.0000Type of ControlQuality and Erosion1.92000.3500Drainage Area (ha)221.92000.3500Imperviousness34%Medium Density Residential1.92000.3500Development TypeMedium Density ResidentialImperviousnessImperviousnessImperviousnessDrainage from Subcatchment1091941ImperviousnessImperviousnessImperviousnessNHYD in Model19411941ImperviousnessImperviousnessImperviousnessImperviousnessPond #253.0Carruthers Creek Residential Phase I - South Pond0.00000.00000.0000StatusBuilt0.00000.00000.05000.1926Type of ControlQuality and Erosion0.99000.20000.2000Drainage Area (ha)13.4Imperviousness53%ImperviousnessImperviousnessImperviousnessDevelopment TypeMedium Density ResidentialImperviousness53%ImperviousnesImperviousnesDrainage from Subcatchment114114ImperviousnesImperviousnesImperviousnesDrainage from Subcatchment114ImperviousnesImperviousnesImperviousnesDrainage from Subcatchment114ImperviousnesImperviousnesImperviousnesDrainage from Subcatchment114ImperviousnesImperviousnesImperviousnesDrainage from Subcatchment114ImperviousnesImperviousnesDrainage f	Pond #	194.1	(m3/s)	(ha.m)
Type of ControlQuality and Erosion1.92000.3500Type of Control221.92000.3500Imperviousness34%1.92000.3500Development TypeMedium Density Residential1.92000.3500Drainage from Subcatchment1091.92000.3500NHYD in Model19411.9411.92001.9200In ScenarioFuture, Pre-Dev, ROPA1.92000.3500Pond #253.0(m3/s)(ha.m)NameCarruthers Creek Residential Phase I - South Pond0.00000.0000StatusBuilt0.00000.0000Type of ControlQuality and Erosion0.99000.2000Drainage Area (ha)13.41.920.99000.2000Drainage Area (ha)13.41.141.141.14NHYD in Model2531.141.141.14NHYD in Model2531.141.141.14	Name	Lajter Lands - Warbler Swamp	0.0000	0.0000
Drainage Area (ha)22Imperviousness34%Development TypeMedium Density ResidentialDrainage from Subcatchment109NHYD in Model1941In ScenarioFuture, Pre-Dev, ROPAPond #253.0NameCarruthers Creek Residential Phase I - South PondNameQuality and ErosionType of ControlQuality and ErosionDrainage Area (ha)13.4Imperviousness53%Development TypeMedium Density ResidentialDrainage from Subcatchment114NHYD in Model253.0	Status	Not Built	0.0520	0.3000
Imperviousness34%Development TypeMedium Density ResidentialDrainage from Subcatchment109NHYD in Model1941In ScenarioFuture, Pre-Dev, ROPAPond #253.0NameCarruthers Creek Residential Phase I - South PondStatusBuiltType of ControlQuality and ErosionDrainage Area (ha)13.4Imperviousness53%Development TypeMedium Density ResidentialDrainage from Subcatchment114NHYD in Model253.0	Type of Control	Quality and Erosion	1.9200	0.3500
Development TypeMedium Density ResidentialDrainage from Subcatchment109NHYD in Model1941In ScenarioFuture, Pre-Dev, ROPAPond #253.0NameCarruthers Creek Residential Phase I - South PondStatusBuiltType of ControlQuality and ErosionDrainage Area (ha)13.4Imperviousness53%Development TypeMedium Density ResidentialDrainage from Subcatchment114NHYD in Model253.0	Drainage Area (ha)	22		
Drainage from Subcatchment109NHYD in Model1941In ScenarioFuture, Pre-Dev, ROPAPond #253.0NameCarruthers Creek Residential Phase I - South PondStatusBuiltType of ControlQuality and ErosionDrainage Area (ha)13.4Imperviousness53%Development TypeMedium Density ResidentialDrainage from Subcatchment114NHYD in Model253	Imperviousness	34%		
NHYD in Model In Scenario1941 Future, Pre-Dev, ROPADischarge (m3/s)Storage (ha.m)Pond #253.0Discharge (m3/s)(ha.m)NameCarruthers Creek Residential Phase I - South Pond Built0.00000.0000StatusQuality and Erosion0.05000.1926Type of ControlQuality and Erosion0.99000.2000Drainage Area (ha)13.40.99000.2000Imperviousness53%0.900114Drainage from Subcatchment1142530.000	Development Type	Medium Density Residential		
In ScenarioFuture, Pre-Dev, ROPADischarge (m3/s)Storage (m3/s)Pond #253.0Discharge (m3/s)(ha.m)NameCarruthers Creek Residential Phase I - South Pond Built0.00000.0000StatusBuilt0.00000.05000.1926Type of ControlQuality and Erosion0.99000.2000Drainage Area (ha)13.40.99000.2000Imperviousness53%Development TypeMedium Density ResidentialDrainage from Subcatchment114114NHYD in Model2530.0000	Drainage from Subcatchment	109		
Image: Pond #DischargeStoragePond #253.0(m3/s)(ha.m)NameCarruthers Creek Residential Phase I - South Pond Built0.00000.0000StatusBuilt0.05000.1926Type of ControlQuality and Erosion0.99000.2000Drainage Area (ha)13.40.99000.2000Development TypeMedium Density Residential	NHYD in Model	1941		
Pond #253.0(m3/s)(ha.m)NameCarruthers Creek Residential Phase I - South Pond0.00000.0000StatusBuilt0.05000.1926Type of ControlQuality and Erosion0.99000.2000Drainage Area (ha)13.40.99000.2000Development TypeMedium Density Residential0.40.4Drainage from Subcatchment1141140.40.4NHYD in Model2530.50.40.4	In Scenario	Future, Pre-Dev, ROPA		
Pond #253.0(m3/s)(ha.m)NameCarruthers Creek Residential Phase I - South Pond0.00000.0000StatusBuilt0.05000.1926Type of ControlQuality and Erosion0.99000.2000Drainage Area (ha)13.40.99000.2000Development TypeMedium Density Residential0.40.4Drainage from Subcatchment1141140.40.4NHYD in Model2530.50.40.4			D: 1	<u>O</u>
NameCarruthers Creek Residential Phase I - South Pond0.00000.0000StatusBuilt0.05000.1926Type of ControlQuality and Erosion0.99000.2000Drainage Area (ha)13.40.99000.2000Development TypeMedium Density Residential0.40.0000Drainage from Subcatchment1140.00000.0000HYD in Model2530.00000.0000	Pond #	253.0	•	
Pond Built0.00000.0000StatusBuilt0.05000.1926Type of ControlQuality and Erosion0.99000.2000Drainage Area (ha)13.4			(m3/s)	(na.m)
StatusBuilt0.05000.1926Type of ControlQuality and Erosion0.99000.2000Drainage Area (ha)13.410.00000.2000Imperviousness53%10.000010.0000Development TypeMedium Density Residential10.000010.0000Drainage from Subcatchment11410.000010.0000NHYD in Model25310.000010.0000	INGILIE		0.0000	0.0000
Drainage Area (ha)13.4Imperviousness53%Development TypeMedium Density ResidentialDrainage from Subcatchment114NHYD in Model253	Status	Built	0.0500	0.1926
Imperviousness53%Development TypeMedium Density ResidentialDrainage from Subcatchment114NHYD in Model253	Type of Control	Quality and Erosion	0.9900	0.2000
Development TypeMedium Density ResidentialDrainage from Subcatchment114NHYD in Model253	Drainage Area (ha)	13.4		
Drainage from Subcatchment 114 NHYD in Model 253	Imperviousness	53%		
NHYD in Model 253	Development Type	Medium Density Residential		
	Drainage from Subcatchment	114		
In Scenario All	NHYD in Model	253		
	In Scenario	All		
Notes SSD based on volumes and release rates	Notes	SSD based on volumes and release rates		

5	252.4	Discharge	Storage
Pond #	253.1	(m3/s)	(ha.m)
Name	Carruthers Creek Residential Phase II - North Pond	0.0000	0.0000
Status	Built	0.0200	0.3325
Type of Control	Quality and Erosion	0.0440	0.3800
Drainage Area (ha)	16.2 + 55 ha of external existing residential	0.0710	0.4045
Imperviousness	63%, 37%	0.1120	0.4825
Development Type	Medium Density Residential	5.5000	0.5000
Drainage from Subcatchment	113, 115		
NHYD in Model	2531		
In Scenario	All		
Dand #	254.0	Discharge	Storage
Pond #	254.0	(m3/s)	(ha.m)
Name	Guthrie Commercial - Hwy 2 Pond	0.0000	0.0000
Status	Built	0.0580	0.1969
Type of Control	Quality, Quantity and Erosion	0.1800	0.2880
Drainage Area (ha)	16.69 in existing, 39.08 in future, pre-dev, and ROPA	0.3300	0.3054
Imperviousness	85%	0.5440	0.3218
Development Type	Commercial	0.7410	0.3370
Drainage from Subcatchment	Online	2.8900	0.3450
NHYD in Model	254		
In Scenario	All		
Pond #	257.0	(m3/s)	(ha.m)
Name	Pickering Plains Pond	0.0000	0.0000
Status	Built	0.7000	0.0900
Type of Control	Quality and Erosion	0.7100	0.1800
Drainage Area (ha)	22.7		
Imperviousness	39%		
Development Type	Medium Density Residential		
Drainage from Subcatchment	107		
NHYD in Model	257		
In Scenario	All		
		Discharge	Storage
Pond #	258.0	(m3/s)	(ha.m)
Name	Blue Maple Holdings	0.0000	0.0000
Status	Built	0.0300	0.0080
Type of Control	Quantity	0.0900	0.0320
Drainage Area (ha)	9.4	0.1300	0.0710
Imperviousness	45%	0.1500	0.1190
Development Type	Medium Density Residential		
Drainage from Subcatchment	106		
NHYD in Model	258		
In Scenario	All		

D 1 <i>H</i>		Discharge	Storage
Pond #	259.0	(m3/s)	(ha.m)
Name	Pickering Beach Subdivision	0.0000	0.0000
Status	Built	0.5000	0.1100
Type of Control	Quantity	0.8000	0.6000
Drainage Area (ha)	44.64	0.8900	0.9100
Imperviousness	64% in existing, 71% and 61% in future, pre-	11.0000	1.6100
Development Type	dev, and ROPA Industrial	11.0000	1.0100
Drainage from Subcatchment	1137 in existing, 136 and minor from 137 in		
NHYD in Model	future, pre-dev, and ROPA 259		
In Scenario	All		
		Discharge	Storage
Pond #	266.0	(m3/s)	(ha.m)
Name	Lake of the Woods Phase I	0.0000	0.0000
Status	Built	0.0080	0.0480
Type of Control	Quality and Erosion	0.0090	0.0950
Drainage Area (ha)	26.2	0.0090	0.1430
Imperviousness	45%	0.1490	0.1900
Development Type	Medium Density Residential	0.4030	0.2470
Drainage from Subcatchment	103	0.7320	0.3030
NHYD in Model	266	1.1200	0.3590
In Scenario	All	1.5620	0.4150
		2.0130	0.4710
		2.9140	0.6040
		3.8650	0.7360
		4.7400	0.8790
		5.0810	1.0320
		0.0010	1.0020
		Discharge	Storage
Pond #	266.1	(m3/s)	(ha.m)
Name	Lakeside Phase II	0.0000	0.0000
Status	Built	0.0090	0.0030
Type of Control	Quality and Erosion	0.0110	0.0310
Drainage Area (ha)	22.4	0.0130	0.0640
Imperviousness	50%	0.0140	0.1000
Development Type	Medium Density Residential	0.2370	0.1760
Drainage from Subcatchment	102	0.7700	0.2610
NHYD in Model	2661	0.8720	0.3540
In Scenario	All	0.9740	0.4550
		1.0760	0.5660
		1.2290	0.7490

		Diacharga	Storess	1	
Pond #	266.2	Discharge	Storage		
Name	Lakeside Phase III	(m3/s)	(ha.m)		
Status	Built	0.0000	0.0000		
Type of Control		0.0090	0.0900		
	Quality and Erosion	0.0760	0.1080		
Drainage Area (ha)	8.5	0.2990	0.1390		
Imperviousness	35%	0.6090	0.1700		
Development Type	Medium Density Residential	0.9850	0.2020		
Drainage from Subcatchment	111	1.4180	0.2350		
NHYD in Model	2662	1.5950	0.2690		
In Scenario	All	1.7280	0.3040		
		1.8610	0.3400		
		2.1260	0.4140		
		Interim		Ultimate	
		Discharge	Storage	Discharge	Storage
Pond #	314.0	(m3/s)	(ha.m)	(m3/s)	(ha.m)
Name	Picov Race Track	0.0000	0.0000	0.0000	0.0000
Status	Built	0.0030	0.0332	0.0260	0.4980
Type of Control	Quality, Quantity and Erosion	0.0070	0.1821	0.1410	0.6160
Drainage Area (ha)	26.2	0.0090	0.2880	0.1570	0.7530
Imperviousness	64%	0.0380	0.4030	0.1810	0.9300
Development Type	Industrial	0.0630	0.5258	0.1970	1.0680
Drainage from Subcatchment	142	0.0800	0.6556	0.2360	1.2180
NHYD in Model	314			50.0000	1.5000
In Scenario	All				
Pond #	314.1	(m3/s)	(ha.m)		
Name	A8 - Lexington County	0.0000	0.0000		
Status	Built	0.0050	0.1940		
Type of Control	Quality, Quantity and Erosion	0.0210	0.5240		
Drainage Area (ha)	49.12	0.0380	0.8880		
Imperviousness	46% in existing, 59% and 39% in future, pre-	0.0430	1.2070		
Development Type	dev, and ROPA Medium Density Residential	0.0890	1.4050		
Drainage from Subcatchment	145 in existing, 145 and 145A in future	0.1720	1.6780		
NHYD in Model	3141	0.2420	2.1030		
In Scenario		0.0000	2.5500		
	All	0.3080	2.5500		
	All	0.3080	2.5500 3.1840		
	All				

	Discharge	Storage		
314.2	(m3/s)	(ha.m)		
A8 - Picov Lands	0.0000	0.0000		
Built	0.0100	0.2151		
Quality, Quantity and Erosion	0.0150	0.4511		
50.52 + 18.88 of major flows from pond 314.3	0.0180	0.7090		
various	0.0210	0.9797		
Medium Density Residential	0.0230	1.1807		
153, 153A, 153B, 153C, 153E, 152D, major	0.0530	1 2589		
	3.3220	2.0033		
	Discharge	Storage		
314.3	(m3/s)	(ha.m)		
A8 - Medallion	0.0000	0.0000		
Built	0.0080	0.5557		
Quality, Quantity and Erosion	0.0120	1.1683		
58.03	0.0130	1.4286		
39%, 60%	0.0880	1.8368		
Medium Density Residential	0.1180	1.9779		
156, 156A minor	0.2150	2.2675		
3143	0.2740	2.4162		
All	0.3390	2.5673		
	0.4100	2.7207		
	0.4850	2.8765		
	Interim		Ultimate	
314.4	Discharge	Storage	Discharge	Storage
Hampstock Southwest Pond 1	(m3/s)	(ha.m)	(m3/s)	(ha.m)
Built	0.0000	0.0000	0.0000	0.0000
Quality, Quantity and Erosion	0.0083	0.2578	0.0180	0.9720
30.19 existing, 48.38 future, pre-dev, ROPA	0.0087	0 2925	0 2190	1.2150
57%				1.4460
	0.0516	0.4202	0.2920	1.7860
	0.0742	0.5191	0.3650	2.0290
pre-dev, ROPA)				
pre-dev, ROPA) 3144	0.086	0.5897	0.4370	2.2480
	A8 - Picov Lands Built Quality, Quantity and Erosion 50.52 + 18.88 of major flows from pond 314.3 area various Medium Density Residential 153, 153A, 153B, 153C, 153E, 152D, major from 156A 3142 Future, pre-dev, ROPA 314.3 A8 - Medallion Built Quality, Quantity and Erosion 58.03 39%, 60% Medium Density Residential 156, 156A minor 3143 All 314.4 Hampstock Southwest Pond 1 Built Quality, Quantity and Erosion	314.2 (m3/s) A8 - Picov Lands 0.0000 Built 0.0100 Quality, Quantity and Erosion 0.0150 50.52 + 18.88 of major flows from pond 314.3 area 0.0180 various 0.0210 Medium Density Residential 0.0230 153, 153A, 153B, 153C, 153E, 152D, major from 156A 0.0530 3142 0.3060 Future, pre-dev, ROPA 0.6940 1.8480 5.0880 9.3220 0.0000 Built 0.0000 Built 0.0000 Quality, Quantity and Erosion 0.0120 58.03 0.0130 39%, 60% 0.0880 Medium Density Residential 0.1180 156, 156A minor 0.2150 314.3 0.2740 All 0.3390 0.4100 0.4850 166 1180 156, 156A minor 0.2150 314.3 0.2740 All 0.3390 0.4100 0.4850 0.0083 0.19 existing, 48.38 future, pre-dev, ROPA 0.0087	314.2 (m3/s) (ha.m) A8 - Picov Lands 0.0000 0.0000 Built 0.0100 0.2151 Quality, Quantity and Erosion 0.0150 0.4511 50.52 + 18.88 of major flows from pond 314.3 area various 0.0180 0.7090 Medium Density Residential 0.0210 0.9797 153, 153A, 153B, 153C, 153E, 152D, major from 156A 0.0530 1.2589 3142 0.0530 1.2589 Future, pre-dev, ROPA 0.6940 1.8433 0.8580 1.9532 1.4800 2.1486 1.8480 2.2357 5.0880 2.4671 9.3220 2.6599 2.6599 314.3 Discharge Storage (m3/s) (ha.m) 4.86 1.8480 2.2357 5.0880 1.8368 0.0120 1.1683 0.0130 1.4286 39%, 60% 0.0880 1.8368 0.1180 1.9779 156, 156A minor 0.2150 2.2675 3143 0.2740 2.4162	314.2 (m3/s) (ha.m) A8 - Picov Lands 0.0000 0.0000 Built 0.0100 0.2151 Quality, Quantity and Erosion 0.0150 0.4511 S0.52 + 18.88 of major flows from pond 314.3 area 0.0180 0.7997 Medium Density Residential 0.0230 1.1807 153, 153A, 153B, 153C, 153E, 152D, major from 156A 0.0530 1.2589 3142 0.0580 1.468 Future, pre-dev, ROPA 0.6940 1.8433 0.3680 1.9532 1.4800 2.486 1.8480 2.2357 5.0880 2.4671 9.3220 314.3 0.0000 0.0000 Built 0.0000 0.0000 Built 0.0000 0.0000 Built 0.0120 1.1683 0.4100 2.2770 2.4162 314.3 0.2740 2.4162 A8 - Medallion 0.0730 1.4286 9.3220 2.6573 0.4100 2.707 0.4100 2.779 2.4162 33% A8 - Medallion 0.1180

Dond #	214.5	Discharge	Storage
Pond #	314.5	(m3/s)	(ha.m)
Name	A8 - Hampstock Southwest Pond 2	0.0000	0.0000
Status	Built	0.0090	0.1010
Type of Control	Quality, Quantity and Erosion	0.0090	0.1107
Drainage Area (ha)	3.94	0.0210	0.1384
Imperviousness	57%	0.0300	0.1647
Development Type	Medium and High Density Residential	0.0390	0.2034
Drainage from Subcatchment	159	0.0440	0.2311
NHYD in Model	3145	0.0480	0.2560
In Scenario	All		
		Discharge	Storage
Pond #	314.6	(m3/s)	(ha.m)
Name	A8 - Hampstock Phase II - Southeast Pond		
Status	Built	0.0000 0.0080	0.0000 0.5040
Type of Control	Quality, Quantity and Erosion	0.0490	0.6300
Drainage Area (ha)	21	0.0430	0.7500
Imperviousness	- · 60%	0.0870	0.9260
Development Type	Medium Density Residential		1.0520
Drainage from Subcatchment	163	0.1430	
NHYD in Model	3146	0.1550	1.1660
	All	5.3700	1.4820
In Scenario	All		
		Discharge	
		Discharge	Storage
Pond #	314.7	(m3/s)	Storage (ha.m)
Pond # Name	314.7 A8 - Hampstock Phase I - Northeast Pond	•	Ū.
	-	(m3/s)	(ha.m)
Name	A8 - Hampstock Phase I - Northeast Pond	(m3/s)	(ha.m) 0.0000
Name Status	A8 - Hampstock Phase I - Northeast Pond Built	(m3/s) 0.0000 0.0080	(ha.m) 0.0000 0.5090
Name Status Type of Control	A8 - Hampstock Phase I - Northeast Pond Built Quality, Quantity and Erosion	(m3/s) 0.0000 0.0080 0.0480	(ha.m) 0.0000 0.5090 0.6360
Name Status Type of Control Drainage Area (ha)	A8 - Hampstock Phase I - Northeast Pond Built Quality, Quantity and Erosion 23.12	(m3/s) 0.0000 0.0080 0.0480 0.0840	(ha.m) 0.0000 0.5090 0.6360 0.7570
Name Status Type of Control Drainage Area (ha) Imperviousness	A8 - Hampstock Phase I - Northeast Pond Built Quality, Quantity and Erosion 23.12 30%	(m3/s) 0.0000 0.0080 0.0480 0.0840 0.1320	(ha.m) 0.0000 0.5090 0.6360 0.7570 0.9350
Name Status Type of Control Drainage Area (ha) Imperviousness Development Type	A8 - Hampstock Phase I - Northeast Pond Built Quality, Quantity and Erosion 23.12 30% Medium Density Residential	(m3/s) 0.0000 0.0080 0.0480 0.0840 0.1320 0.1680	(ha.m) 0.0000 0.5090 0.6360 0.7570 0.9350 1.0620
Name Status Type of Control Drainage Area (ha) Imperviousness Development Type Drainage from Subcatchment	A8 - Hampstock Phase I - Northeast Pond Built Quality, Quantity and Erosion 23.12 30% Medium Density Residential 165	(m3/s) 0.0000 0.0080 0.0480 0.0840 0.1320 0.1680 0.2070	(ha.m) 0.0000 0.5090 0.6360 0.7570 0.9350 1.0620 1.1760
Name Status Type of Control Drainage Area (ha) Imperviousness Development Type Drainage from Subcatchment NHYD in Model	A8 - Hampstock Phase I - Northeast Pond Built Quality, Quantity and Erosion 23.12 30% Medium Density Residential 165 3147	(m3/s) 0.0000 0.0080 0.0480 0.0840 0.1320 0.1680 0.2070 7.0490	(ha.m) 0.0000 0.5090 0.6360 0.7570 0.9350 1.0620 1.1760 1.9360
Name Status Type of Control Drainage Area (ha) Imperviousness Development Type Drainage from Subcatchment NHYD in Model	A8 - Hampstock Phase I - Northeast Pond Built Quality, Quantity and Erosion 23.12 30% Medium Density Residential 165 3147	(m3/s) 0.0000 0.0080 0.0480 0.0840 0.1320 0.1680 0.2070 7.0490 Discharge	(ha.m) 0.0000 0.5090 0.6360 0.7570 0.9350 1.0620 1.1760 1.9360 Storage
Name Status Type of Control Drainage Area (ha) Imperviousness Development Type Drainage from Subcatchment NHYD in Model In Scenario	A8 - Hampstock Phase I - Northeast Pond Built Quality, Quantity and Erosion 23.12 30% Medium Density Residential 165 3147 All	(m3/s) 0.0000 0.0080 0.0480 0.0840 0.1320 0.1680 0.2070 7.0490 Discharge (m3/s)	(ha.m) 0.0000 0.5090 0.6360 0.7570 0.9350 1.0620 1.1760 1.9360 Storage (ha.m)
Name Status Type of Control Drainage Area (ha) Imperviousness Development Type Drainage from Subcatchment NHYD in Model In Scenario	A8 - Hampstock Phase I - Northeast Pond Built Quality, Quantity and Erosion 23.12 30% Medium Density Residential 165 3147 All	(m3/s) 0.0000 0.0080 0.0480 0.0840 0.1320 0.1680 0.2070 7.0490 Discharge (m3/s) 0.0000	(ha.m) 0.0000 0.5090 0.6360 0.7570 0.9350 1.0620 1.1760 1.9360 Storage (ha.m) 0.0000
Name Status Type of Control Drainage Area (ha) Imperviousness Development Type Drainage from Subcatchment NHYD in Model In Scenario Pond # Name Status	A8 - Hampstock Phase I - Northeast Pond Built Quality, Quantity and Erosion 23.12 30% Medium Density Residential 165 3147 All 314.8 A8 - Hampstock Phase III - Northwest Pond Built	(m3/s) 0.0000 0.0080 0.0480 0.0840 0.1320 0.1680 0.2070 7.0490 Discharge (m3/s) 0.0000 0.0160	(ha.m) 0.0000 0.5090 0.6360 0.7570 0.9350 1.0620 1.1760 1.9360 Storage (ha.m) 0.0000 1.1160
Name Status Type of Control Drainage Area (ha) Imperviousness Development Type Drainage from Subcatchment NHYD in Model In Scenario Pond # Name Status Type of Control	A8 - Hampstock Phase I - Northeast Pond Built Quality, Quantity and Erosion 23.12 30% Medium Density Residential 165 3147 All 314.8 A8 - Hampstock Phase III - Northwest Pond Built Quality, Quantity and Erosion	(m3/s) 0.0000 0.0080 0.0480 0.0840 0.1320 0.1680 0.2070 7.0490 Discharge (m3/s) 0.0000 0.0160 0.1040	(ha.m) 0.0000 0.5090 0.6360 0.7570 0.9350 1.0620 1.1760 1.9360 Storage (ha.m) 0.0000 1.1160 1.3940
Name Status Type of Control Drainage Area (ha) Imperviousness Development Type Drainage from Subcatchment NHYD in Model In Scenario Pond # Name Status Type of Control Drainage Area (ha)	A8 - Hampstock Phase I - Northeast Pond Built Quality, Quantity and Erosion 23.12 30% Medium Density Residential 165 3147 All 314.8 A8 - Hampstock Phase III - Northwest Pond Built Quality, Quantity and Erosion 44.27	(m3/s) 0.0000 0.0080 0.0480 0.1320 0.1680 0.2070 7.0490 Discharge (m3/s) 0.0000 0.0160 0.1040 0.1800	(ha.m) 0.0000 0.5090 0.6360 0.7570 0.9350 1.0620 1.1760 1.9360 Storage (ha.m) 0.0000 1.1160 1.3940 1.6600
Name Status Type of Control Drainage Area (ha) Imperviousness Development Type Drainage from Subcatchment NHYD in Model In Scenario Pond # Name Status Type of Control Drainage Area (ha) Imperviousness	A8 - Hampstock Phase I - Northeast Pond Built Quality, Quantity and Erosion 23.12 30% Medium Density Residential 165 3147 All 314.8 A8 - Hampstock Phase III - Northwest Pond Built Quality, Quantity and Erosion 44.27 45%	(m3/s) 0.0000 0.0080 0.0480 0.0840 0.1320 0.1680 0.2070 7.0490 Discharge (m3/s) 0.0000 0.0160 0.1040 0.1800 0.2660	(ha.m) 0.0000 0.5090 0.6360 0.7570 0.9350 1.0620 1.1760 1.9360 Storage (ha.m) 0.0000 1.1160 1.3940 1.6600 2.0500
Name Status Type of Control Drainage Area (ha) Imperviousness Development Type Drainage from Subcatchment NHYD in Model In Scenario Pond # Name Status Type of Control Drainage Area (ha) Imperviousness Development Type	A8 - Hampstock Phase I - Northeast Pond Built Quality, Quantity and Erosion 23.12 30% Medium Density Residential 165 3147 All 314.8 A8 - Hampstock Phase III - Northwest Pond Built Quality, Quantity and Erosion 44.27 45% Medium Density Residential	(m3/s) 0.0000 0.0080 0.0480 0.0840 0.1320 0.1680 0.2070 7.0490 Discharge (m3/s) 0.0000 0.0160 0.1040 0.1800 0.2660 0.3120	(ha.m) 0.0000 0.5090 0.6360 0.7570 0.9350 1.0620 1.1760 1.9360 Storage (ha.m) 0.0000 1.1160 1.3940 1.6600 2.0500 2.3290
Name Status Type of Control Drainage Area (ha) Imperviousness Development Type Drainage from Subcatchment NHYD in Model In Scenario Pond # Name Status Type of Control Drainage Area (ha) Imperviousness Development Type Drainage from Subcatchment	A8 - Hampstock Phase I - Northeast Pond Built Quality, Quantity and Erosion 23.12 30% Medium Density Residential 165 3147 All 314.8 A8 - Hampstock Phase III - Northwest Pond Built Quality, Quantity and Erosion 44.27 45% Medium Density Residential 166	(m3/s) 0.0000 0.0080 0.0480 0.0840 0.1320 0.1680 0.2070 7.0490 Discharge (m3/s) 0.0000 0.0160 0.1040 0.1800 0.2660 0.3120 0.3460	(ha.m) 0.0000 0.5090 0.6360 0.7570 0.9350 1.0620 1.1760 1.9360 Storage (ha.m) 0.0000 1.1160 1.3940 1.6600 2.0500 2.3290 2.5800
Name Status Type of Control Drainage Area (ha) Imperviousness Development Type Drainage from Subcatchment NHYD in Model In Scenario Pond # Name Status Type of Control Drainage Area (ha) Imperviousness Development Type Drainage from Subcatchment NHYD in Model	A8 - Hampstock Phase I - Northeast Pond Built Quality, Quantity and Erosion 23.12 30% Medium Density Residential 165 3147 All 314.8 A8 - Hampstock Phase III - Northwest Pond Built Quality, Quantity and Erosion 44.27 45% Medium Density Residential 166 3148	(m3/s) 0.0000 0.0080 0.0480 0.0840 0.1320 0.1680 0.2070 7.0490 Discharge (m3/s) 0.0000 0.0160 0.1040 0.1800 0.2660 0.3120	(ha.m) 0.0000 0.5090 0.6360 0.7570 0.9350 1.0620 1.1760 1.9360 Storage (ha.m) 0.0000 1.1160 1.3940 1.6600 2.0500 2.3290
Name Status Type of Control Drainage Area (ha) Imperviousness Development Type Drainage from Subcatchment NHYD in Model In Scenario Pond # Name Status Type of Control Drainage Area (ha) Imperviousness Development Type Drainage from Subcatchment	A8 - Hampstock Phase I - Northeast Pond Built Quality, Quantity and Erosion 23.12 30% Medium Density Residential 165 3147 All 314.8 A8 - Hampstock Phase III - Northwest Pond Built Quality, Quantity and Erosion 44.27 45% Medium Density Residential 166	(m3/s) 0.0000 0.0080 0.0480 0.0840 0.1320 0.1680 0.2070 7.0490 Discharge (m3/s) 0.0000 0.0160 0.1040 0.1800 0.2660 0.3120 0.3460	(ha.m) 0.0000 0.5090 0.6360 0.7570 0.9350 1.0620 1.1760 1.9360 Storage (ha.m) 0.0000 1.1160 1.3940 1.6600 2.0500 2.3290 2.5800

		Interim		Ultimate	
Pond #	369.0	Discharge	Storage	Discharge	Storage
Name	Guthrie Industrial - North Pond	(m3/s)	(ha.m)	(m3/s)	(ha.m)
Status	Interim Built	0.0000	0.0000	0.0000	0.0000
Type of Control	Quality, Quantity and Erosion	0.0050	0.4760	0.0050	0.4445
Drainage Area (ha)	13.21	0.0790	0.5800	0.0100	0.4623
Imperviousness	90%	0.1290	0.6500	0.0370	0.5713
Development Type	Industrial	0.1720	0.7200	0.0490	0.6510
Drainage from Subcatchment	152F	0.1990	0.7750	0.0600	0.7582
NHYD in Model	369	0.2200	0.8300	0.0680	0.8401
In Scenario	Interim in Existing; Ultimate in Future, Pre-Dev, ROPA			0.0740	0.9240
		Interim		Ultimate	
		Discharge	Storage	Discharge	Storage
Pond #	369.1	(m3/s)	(ha.m)	(m3/s)	(ha.m)
Name	Guthrie Industrial - South Pond	0.0000	0.0000	0.0000	0.0000
Status	Interim Built	0.0050	0.4620	0.0070	0.4407
Type of Control	Quality, Quantity and Erosion	0.0880	0.5650	0.0240	0.4647
Drainage Area (ha)	12.82	0.1250	0.6200	0.0730	0.5601
Imperviousness	90%	0.1660	0.6900	0.1140	0.6214
Development Type	Industrial	0.1920	0.7450	0.1520	0.7508
Drainage from Subcatchment	1521	0.2170	0.8100	0.1770	0.7725
NHYD in Model	3691			0.2000	0.8416
In Scenario	Interim in Existing; Ultimate in Future, Pre-Dev, ROPA				
		Discharge	Storage		
Pond #	370.0	(m3/s)	(ha.m)		
Name	Salem/Schilles - 401 Interchange	0.0000	0.0000		
Status	Built	0.0260	0.1470		
Type of Control	Quality, Quantity and Erosion	0.0370	0.3170		
Drainage Area (ha)	26.77	0.0460	0.4960		
Imperviousness	58%	0.1440	0.6840		
Development Type	Roads and Commercial	0.7400	0.8820		
Drainage from Subcatchment	121	1.2690	1.0880		
NHYD in Model	370	1.3710	1.3050		
In Scenario	Future, Pre-Dev, ROPA				
		Discharge	Storage		
Pond #	371.0	(m3/s)	(ha.m)		
Name	Salem Achilles - Retrofit Pond	(m3/s) 0.0000	(ha.m) 0.0000		
Name Status	Salem Achilles - Retrofit Pond Built	(m3/s)	(ha.m) 0.0000 0.0281		
Name Status Type of Control	Salem Achilles - Retrofit Pond Built Quality and Erosion	(m3/s) 0.0000 0.0060 0.0090	(ha.m) 0.0000 0.0281 0.0642		
Name Status Type of Control Drainage Area (ha)	Salem Achilles - Retrofit Pond Built Quality and Erosion 23.88	(m3/s) 0.0000 0.0060	(ha.m) 0.0000 0.0281		
Name Status Type of Control Drainage Area (ha) Imperviousness	Salem Achilles - Retrofit Pond Built Quality and Erosion 23.88 45%	(m3/s) 0.0000 0.0060 0.0090	(ha.m) 0.0000 0.0281 0.0642		
Name Status Type of Control Drainage Area (ha) Imperviousness Development Type	Salem Achilles - Retrofit Pond Built Quality and Erosion 23.88 45% Medium Density Residential	(m3/s) 0.0000 0.0060 0.0090	(ha.m) 0.0000 0.0281 0.0642		
Name Status Type of Control Drainage Area (ha) Imperviousness Development Type Drainage from Subcatchment	Salem Achilles - Retrofit Pond Built Quality and Erosion 23.88 45% Medium Density Residential 120	(m3/s) 0.0000 0.0060 0.0090	(ha.m) 0.0000 0.0281 0.0642		
Name Status Type of Control Drainage Area (ha) Imperviousness Development Type	Salem Achilles - Retrofit Pond Built Quality and Erosion 23.88 45% Medium Density Residential	(m3/s) 0.0000 0.0060 0.0090	(ha.m) 0.0000 0.0281 0.0642		

Pond # Storage Storage (max) (max) Name Salem Achilles - Treatmeant Train Pond 0.0000 0.0020 Statis Built 0.0150 0.0124 Opiniage Area (ha) 4.35 0.0200 0.1179 Imperviousness 55% 0.0260 0.2060 Development Type Medium Density Residential 0.1000 0.2060 Development Type All - - - Name Loblaws Distribution Centre Pond 0.0000 0.0000 0.0000 0.0000 0.0056 0.11131 Drainage from Subcatchment 129A 0.0756 0.2724 Drainage from Subcatchment 129A 0.0660 0.5292 Drainage from Subcatchment 129A 0.0660 0.5292 Drainage from Subcatchment				
Name Salem Actillies - Treatmeant Train Pond (0.000) 0.0000 Status Built 0.0000 0.0229 Type of Control Quality and Erosion 0.0150 0.0724 Imperviousness 55% 0.0260 0.2460 Development Type Medlum Density Residential 0.1000 0.2600 NHYD in Model 3711 0.0000 0.0000 Name Lobiaws Distribution Centre Pond 0.0066 0.0371 Name Lobiaws Distribution Centre Pond 0.0461 0.1131 Drainage from Subcatchment 129A 0.0461 0.1131 Drainage from Subcatchment 129A 0.0461 0.1131 Drainage from Subcatchment 129A 0.0683 0.4413 NHYD in Model 373 0.0660 0.5292 Status <td></td> <td></td> <td>-</td> <td>Storage</td>			-	Storage
Status Built 0.0000 0.0020 Type of Control Quality and Erosion 0.0150 0.0724 Drainage Area (ha) 4.38 0.0200 0.1179 Imperviousness 55% 0.0260 0.2040 Development Type Medium Density Residential 0.1000 0.2060 Drainage from Subcatchment 119 2.6500 0.2410 NHYD In Model 3711 1 2.6500 0.2410 NHYD In Model 3711 1 0.0000 0.0000 Status Built 0.0000 0.0000 0.0000 Status Built 0.0026 0.0371 Type of Control Quality and Erosion 0.0461 0.1131 Drainage fors Subcatchment 129.A 0.0060 0.5292 Development Type Industrial 0.0755 0.2724 Development Type Industrial 0.0683 0.4413 NHYD In Model 373 0.0960 0.5292 Drainage from Subcatchment 129.A 0.086				
Type of Control Quality and Erosion 0.0150 0.0724 Drainage Area (ha) 4.38 0.0200 0.1179 Imperviounness 55% 0.0260 0.2046 Development Type Medium Density Residential 0.1000 0.2060 Drainage from Subcatchment 119 2.6500 0.2410 NHYD in Model 3711 2.6500 0.2410 Name Loblaws Distribution Centre Pond 0.0000 0.0000 Status Built 0.0266 0.0371 Name Loblaws Distribution Centre Pond 0.0705 0.2724 Development Type Industrial 0.0799 0.3557 Drainage from Subcatchment 129A 0.0883 0.4413 Drainage from Subcatchment 129A 0.0883 0.4413 NHYD in Model 373 0.0960 0.5222 In Scenario All 0.0986 0.3253 Datage from Subcatchment 129A 0.0860 0.3253 Drainage from Subcatchment 15.16 0.0790 <td< td=""><td></td><td></td><td>0.0000</td><td>0.0000</td></td<>			0.0000	0.0000
Drainage Area (ha)4.380.02000.1179Imperviousness55%0.02600.2046Development TypeMedium Density Residential0.10000.2060Drainage from Subcatchment1192.65000.2410NHYD in Model37112.65000.2410In ScenarioAll10000.0000StatusBuilt0.00260.0371NameLobiaws Distribution Centre Pond0.00260.0371StatusBuilt0.02660.0371Type of ControlQuality and Erosion0.04610.1131Drainage from Subcatchment129A0.05960.1915Imperviousness33%0.07050.2522Development TypeIndustrial0.07990.3557Drainage from Subcatchment129A0.08830.4413NHYD in Model3730.09600.5292NameDeer Creek0.00000.0000StatusNet Built0.02700.0547Drainage Area (ha)15.160.07800.2666Imperviousness32%0.08600.3253Development TypeResidential0.13800.4278Drainage Area (ha)15.160.07800.2666Imperviousness32%0.08600.3253Development TypeResidential0.13800.4278Drainage Area (ha)15.160.07800.2666Imperviousness32%0.08600.3253Development TypeResidential0.1380<			0.0090	0.0299
Imperviousness 55% 0.00260 0.2046 Development Type Medium Density Residential 0.1000 0.2060 Drainage from Subcatchment 119 2.6500 0.2410 NHYD in Model 3711 in Scenario All Pond # 373.0 (m3/s) (ha.m) Name Loblews Distribution Centre Pond 0.0000 0.0000 Status Built 0.0256 0.1915 Imperviousness B3% 0.0705 0.2224 Development Type Industrial 0.0706 0.2224 Development Type Industrial 0.0705 0.2224 Development Type Industrial 0.0705 0.2224 Development Type Industrial 0.0705 0.2224 Development Type Industrial 0.0706 0.2525 Drainage from Subcatchment 129A 0.0883 0.4413 NHYD in Model 0.1032 0.6193 0.1032 0.6193 I	Type of Control		0.0150	0.0724
Development Type Medium Density Residential 0.0000 0.2060 Drainage from Subcatchment 119 2.6500 0.2410 NHYD in Model 3711 In Scenario All Pend # 37.0 Name Loblaws Distribution Centre Pond 0.0000 0.0000 Status Built 0.0266 0.0371 Type of Control Quality and Erosion 0.0461 0.1131 Drainage Area (ha) 53.7 0.0596 0.1915 Imperviousness 33% 0.0705 0.2274 Development Type Industrial 0.0799 0.3557 Drainage from Subcatchment 129A 0.0883 0.4413 NHYD in Model 373 0.0960 0.5292 In Scenario All 0.0000 0.0000 Status Not Built 0.0270 0.6471 Name Deer Creek 0.0590 0.1588 Drainage from Subcatchment 178A <t< td=""><td>Drainage Area (ha)</td><td>4.38</td><td>0.0200</td><td>0.1179</td></t<>	Drainage Area (ha)	4.38	0.0200	0.1179
Drainage from Subcatchment 119 2.6500 0.2410 NHYD in Model 3711 2.6500 0.2410 In Scenario All 2.6500 0.2410 Pond # 373.0 Discharge Storage (m3/s) (ha.m) 0.0000 0.0000 Status Built 0.0266 0.0371 Drainage Area (ha) 53.7 0.0756 0.2724 Development Type Industrial 0.0799 0.3557 Drainage from Subcatchment 129A 0.0960 0.5292 Drainage from Subcatchment 129A 0.0980 0.5292 Drainage from Subcatchment 129A 0.0900 0.0000 NHYD In Model 373 0.0960 0.5292 In Scenario All 0.0960 0.5292 Name Deer Creek 0.0000 0.0000 Status Not Built 0.0270 0.0547 Drainage from Subcatchment 178A 0.1800 0.3253 Development Type Residential	mperviousness	55%	0.0260	0.2046
NHYD in Model In Scenario 3711 All Discharge (m3/s) Storage (m3/s) Pond # 373.0 Discharge (m3/s) Storage (m3/s) (ha.m) Name Loblaws Distribution Centre Pond 0.0000 0.0000 Status Built 0.0461 0.1131 Drainage Area (ha) 5.3.7 0.0596 0.1915 Imperviousness 83% 0.0705 0.2724 Development Type Industrial 0.0799 0.3557 Drainage from Subcatchment 129A 0.0883 0.4113 NHYD In Model 373 0.0960 0.5292 In Scenario All 0.1098 0.7118 Pond # Neme Dever Creek 0.0900 0.0000 Status Not Built 0.0590 0.1558 0.7560 0.2724 Pond # Neme Dever Creek 0.0900 0.0000 0.0000 0.0000 Status Not Built 0.1032 0.1558 0.7580 0.1558 Drainage from Subcatchment 175A <td>Development Type</td> <td>Medium Density Residential</td> <td>0.1000</td> <td>0.2060</td>	Development Type	Medium Density Residential	0.1000	0.2060
In Scenario All Discharge Storage (m3/s) (ha.m) Name Loblaws Distribution Centre Pond 0.0000 0.0000 Status Built 0.0266 0.0371 Type of Control Quality and Erosion 0.0461 0.1131 Drainage Area (ha) 53.7 0.0586 0.2724 Development Type Industrial 0.0705 0.2724 Development Type Industrial 0.0799 0.3557 Drainage from Subcatchment 129A 0.0883 0.4413 NHYD in Model 373 0.0688 0.4113 In Scenario All 0.1032 0.6193 In Scenario All 0.0350 0.1508 Pond # Deer Creek 0.0590 0.1528 Prainage Area (ha) 15.16 0.0780 0.2666 Imperivousness 32% 0.0880 0.3253 Development Type Residential 0.1380 0.4278 Drainage from Subcatchment 178A 0.1380 0.4278 <	Drainage from Subcatchment	119	2.6500	0.2410
Pond # 373.0 Discharge (m3/s) (ha.m) Name Loblaws Distribution Centre Pond 0.0000 0.0000 Status Built 0.0266 0.0371 Type of Control Quality and Erosion 0.0461 0.1131 Drainage Area (ha) 53.7 0.0596 0.1915 Imperviousness 83% 0.0795 0.2724 Development Type Industrial 0.0960 0.5292 Drainage from Subcatchment 129A 0.0883 0.4413 NHYD in Model 373 0.0960 0.5292 ant Scenario All 0.1032 0.6193 Name Deer Creek 0.0000 0.0000 Status Not Built 0.0270 0.0547 Type of Control 0.0780 0.2666 0.3253 Drainage from Subcatchment 15.16 0.0780 0.2666 Imperviousness 32% 0.0860 0.3253 Drainage from Subcatchment 178A 0.1380 0.4278 Drainage from Subcatchment	NHYD in Model	3711		
Pond # 373.0 (m3/s) (ha.m) Name Loblaws Distribution Centre Pond 0.0000 0.0000 Status Built 0.0226 0.0371 Type of Control Quality and Erosion 0.0461 0.11315 Drainage Area (ha) 53.7 0.0596 0.2724 Development Type Industrial 0.0705 0.2724 Development Type Industrial 0.0799 0.3557 Drainage from Subcatchment 129A 0.0883 0.4413 NHYD in Model 373 0.0960 0.5292 In Scenario All 0.1032 0.61931 N Scenario All 0.1032 0.61931 Name Deer Creek 0.0270 0.0547 Name Deer Creek 0.0270 0.0547 Status Not Built 0.0270 0.0547 Type of Control 15.16 0.0780 0.2666 Imperviousness 32% 0.1380 0.4278 Drainage from Subcatchment 178A	n Scenario	All		
Pond # 373.0 (m3/s) (ha.m) Name Loblaws Distribution Centre Pond 0.0000 0.0000 Status Built 0.0226 0.0371 Type of Control Quality and Erosion 0.0461 0.11315 Drainage Area (ha) 53.7 0.0596 0.2724 Development Type Industrial 0.0705 0.2724 Development Type Industrial 0.0799 0.3557 Drainage from Subcatchment 129A 0.0883 0.4413 NHYD in Model 373 0.0960 0.5292 In Scenario All 0.1032 0.61931 N Scenario All 0.1032 0.61931 Name Deer Creek 0.0270 0.0547 Name Deer Creek 0.0270 0.0547 Status Not Built 0.0270 0.0547 Type of Control 15.16 0.0780 0.2666 Imperviousness 32% 0.1380 0.4278 Drainage from Subcatchment 178A				
Name Loblaws Distribution Centre Pond 0.0000 0.0000 Status Built 0.0266 0.0371 Type of Control Quality and Erosion 0.0461 0.1131 Drainage Area (ha) 53.7 0.0596 0.1915 imperviousness 83% 0.0705 0.2224 Development Type Industrial 0.0883 0.4413 Drainage from Subcatchment 129A 0.0883 0.4413 NHYD in Model 373 0.0960 0.5292 In Scenario All 0.1032 0.6193 Name Deer Creek 0.0000 0.0000 Status Not Built 0.0270 0.0547 Name Deer Creek 0.0780 0.2666 Drainage from Subcatchment 15.16 0.0780 0.2666 Drainage from Subcatchment 178A 0.1380 0.4278 Drainage from Subcatchment 178A 0.1380 0.4278 Drainage from Subcatchment 178A 0.0000 0.0000 NHYD			Discharge	Storage
Status Built 0.0266 0.0371 Type of Control Quality and Erosion 0.0461 0.1131 Drainage Area (ha) 53.7 0.0596 0.1915 Imperviousness 83% 0.0705 0.2724 Development Type Industrial 0.0799 0.3567 Drainage from Subcatchment 129A 0.0883 0.4413 NHYD in Model 0.0960 0.5292 0.1032 0.6193 In Scenario All 0.1098 0.7118 0.1098 0.7118 Pond # Deer Creek 0.0000 0.0000 0.0000 0.0000 Status Not Built 0.0780 0.2666 0.3253 Drainage Area (ha) 15.16 0.0780 0.2666 Imperviousness 32% 0.0860 0.3253 Development Type Residential 0.1380 0.4278 Development Type Future, pre-dev, ROPA 0.1380 0.4278 Pond # Not Built 0.0000 0.0000 0.0000			(m3/s)	(ha.m)
Discrete Discrete Discrete Discrete Discrete Type of Control Quality and Erosion 0.0461 0.1131 Drainage Area (ha) 53.7 0.05596 0.1915 Imperviousness 83% 0.0705 0.2724 Development Type Industrial 0.0799 0.3557 Drainage from Subcatchment 129A 0.0883 0.4413 NHYD in Model 373 0.0960 0.5292 In Scenario All 0.1032 0.6193 In Scenario All 0.1098 0.7118 Name Deer Creek 0.0000 0.0000 Status Not Built 0.0270 0.0547 Type of Control Discharge (m3/s) (fna.m) Drainage Area (ha) 15.16 0.0780 0.2566 Imperviousness 32% 0.0860 0.3253 Development Type Residential 0.1380 0.4278 Drainage from Subcatchment 178A 0.00000 0.0000 Ner	Name	Loblaws Distribution Centre Pond	0.0000	0.0000
Drainage Area (ha) 53.7 0.0596 0.1915 Imperviousness 83% 0.0705 0.2724 Development Type industrial 0.0799 0.3557 Drainage from Subcatchment 129A 0.0883 0.4413 NHYD in Model 373 0.0960 0.5292 In Scenario All 0.1032 0.6193 Name Deer Creek 0.0000 0.0000 Status Not Built 0.0270 0.0547 Nype of Control 15.16 0.0780 0.2666 Imperviousness 32% 0.0860 0.3253 Development Type Residential 0.1380 0.4278 Drainage from Subcatchment 178A 0.0000 0.0000 NHYD in Model 0 0 0.1380 0.4278 Drainage from Subcatchment 178A 0.0100 0.0000 NHYD in Model 0 0 0.0000 0.0000 In Scenario Future, pre-dev, ROPA Discharge (m3/s) (ha.m) (ha.m)	Status		0.0266	0.0371
Imperviousness 83% 0.0705 0.2704 Development Type Industrial 0.0709 0.3557 Drainage from Subcatchment 129A 0.0883 0.4413 NHYD in Model 373 0.0960 0.5292 In Scenario All 0.1032 0.6193 In Scenario All 0.1098 0.7118 Pond # Deer Creek 0.0000 0.0000 Name Deer Creek 0.0000 0.0000 Status Not Built 0.0270 0.0547 Type of Control Discharge 0.0360 0.3253 Development Type Residential 0.0780 0.2666 Im Scenario 15.16 0.0780 0.2666 Imperviousness 32% 0.1380 0.4278 Drainage from Subcatchment 178A 0.1380 0.4278 NHYD in Model 0 0 0.0000 0.0000 In Scenario Future, pre-dev, ROPA 0.0000 0.0140 1.0650 Pond # <td>Type of Control</td> <td>Quality and Erosion</td> <td>0.0461</td> <td>0.1131</td>	Type of Control	Quality and Erosion	0.0461	0.1131
Development Type Industrial 0.0799 0.3557 Drainage from Subcatchment 129A 0.0883 0.4413 NHYD in Model 373 0.0960 0.5292 In Scenario All 0.1032 0.6193 In Scenario All 0.1098 0.7118 Pond # Deer Creek Discharge (m3/s) (ha.m) Name Deer Creek 0.0780 0.2657 Status Not Built 0.0780 0.2666 0.0590 0.1558 Drainage Area (ha) 15.16 0.0780 0.2666 0.3253 Development Type Residential 0.1380 0.4278 0.1380 0.4278 Drainage from Subcatchment 178A 0.1380 0.4278 0.1380 0.4278 Drainage from Subcatchment 178A 0.0000 0.0000 0.0000 0.0000 NetPoint Model 0 0 0.0140 1.0650 0.1280 1.3252 Pond # Not Built 0.0140 1.0650 0.128	Drainage Area (ha)	53.7	0.0596	0.1915
Drainage from Subcatchment 129A 0.0863 0.4413 NHYD in Model 373 0.0960 0.5292 0.1032 0.6193 In Scenario All 0.1098 0.7118 0.1098 0.7118 Pond # All 0.0863 0.4413 0.1098 0.7118 Name Deer Creek 0.0000 0.0000 0.0000 Status Not Built 0.0270 0.0547 Drainage Area (ha) 15.16 0.0780 0.2666 Imperviousness 32% 0.1380 0.4278 Drainage from Subcatchment 178A 0.1380 0.4278 Pond # Future, pre-dev, ROPA 0.1380 0.4278 Pond # Beechridge 0.0000 0.0000 Name Beechridge 0.0000 0.0000 Status Not Built 0.0140 1.0650 Name Beechridge 0.1280 1.3252 Pond # Status 0.0140 1.0650 Type of Control 0.1280	mperviousness	83%	0.0705	0.2724
NHYD in Model 373 0.0960 0.5292 NHYD in Model 373 0.1032 0.6193 In Scenario All 0.1098 0.7118 Name Deer Creek 0.0000 0.0000 Name Deer Creek 0.0000 0.0000 Status Not Built 0.0270 0.0547 Type of Control 0.0780 0.2666 Imperviousness 32% 0.0860 0.3253 Development Type Residential 0.1380 0.4278 Pond # 178A 0.5000 0.0000 NHYD in Model 0 0 0.0000 0.0000 In Scenario Uture, pre-dev, ROPA Discharge Storage Pond # Residential 0.0140 1.0650 Name Beechridge 0.0140 1.0650 Name Status Not Built 0.0140 1.0650 Name Beechridge 0.3500 1.6299 Inperviousness 36.88 0.3500 1.6299	Development Type	Industrial	0.0799	0.3557
In Scenario All 0.0300 0.0322 0.1032 0.6193 0.7118 Name Deer Creek Not Built 0.0000 0.0000 0.0000 0.0000 0.02666 0.1558 0.1558 0.1580 0.3253 0.1580 0.3253 0.1380 0.4278 0.1380 0.4278 0.1380 0.4278 0.1380 0.4278 0.1380 0.4278 0.1380 0.4278 0.13	Drainage from Subcatchment	129A	0.0883	0.4413
In Scenario All 0.1098 0.7118 Pond # Discharge Storage Name Deer Creek 0.0000 0.0000 Status Not Built 0.0270 0.0547 Type of Control 0.0780 0.2666 Imperviousness 32% 0.0860 0.3253 Development Type Residential 0.1080 0.4278 Drainage from Subcatchment 178A 0.1380 0.4278 NHYD in Model 0 0 (m3/s) (ha.m) Name Beechridge 0.0000 0.0000 0.0000 Status Not Built 0.0000 0.0000 0.0000 Name Beechridge 0.0140 1.0650 Name Not Built 0.0140 1.0650 Type of Control 0.0140 1.0650 Type of Control 0.0250 1.3252 Drainage Area (ha) 36.88 0.3500 1.6299 Imperviousness 81% 0.3500 1.6299	NHYD in Model	373	0.0960	0.5292
Pond # Discharge Storage Name Deer Creek 0.0000 0.0000 Status Not Built 0.0270 0.0547 Type of Control 0.0590 0.1558 Drainage Area (ha) 15.16 0.0780 0.2666 Imperviousness 32% 0.0860 0.3253 Development Type Residential 0.1380 0.4278 Drainage from Subcatchment 178A 0.1380 0.4278 NHYD in Model 0 0 0 0.0000 0.0000 In Scenario Future, pre-dev, ROPA Discharge Storage Pond # Mame Beechridge 0.0140 1.0650 Not Built 0.0140 1.0650 0.1280 1.3252 Drainage Area (ha) 36.88 0.3500 1.6299 Imperviousness 81% 0.9010 1.7163 Development Type Residential and employment 0.9010 1.7163			0.1032	0.6193
Pond # Deer Creek Discharge (m3/s) Storage (m3/s) Name Deer Creek 0.0000 0.0000 Status Not Built 0.0270 0.0547 Type of Control 0.0590 0.1558 Drainage Area (ha) 15.16 0.0780 0.2666 Imperviousness 32% 0.0860 0.3253 Development Type Residential 0.1380 0.4278 Drainage from Subcatchment 178A 0.1380 0.4278 NHYD in Model 0 (m3/s) (ha.m) Name Beechridge 0.0000 0.0000 Status Not Built 0.0000 0.0000 Name Beechridge 0.0140 1.0650 Type of Control 0.1380 0.13252 0.13252 Drainage Area (ha) 36.88 0.3500 1.6299 Imperviousness 81% 0.9010 1.7163 Development Type Residential and employment 0.9010 1.7163	n Scenario	All	0.1098	0.7118
Pond # (m3/s) (ha.m) Name Deer Creek 0.0000 0.0000 Status Not Built 0.0270 0.0547 Type of Control 0.0590 0.1558 Drainage Area (ha) 15.16 0.0780 0.2666 Imperviousness 32% 0.0860 0.3253 Development Type Residential 0.1380 0.4278 Drainage from Subcatchment 178A 0.1380 0.4278 NHYD in Model 0 0 0 0.0000 In Scenario Future, pre-dev, ROPA Discharge Storage Pond # Mame Beechridge 0.0140 1.0650 Name Beechridge 0.1280 1.3252 Drainage Area (ha) 36.88 0.3500 1.6299 Imperviousness 81% 0.9010 1.7163 Development Type Residential and employment Discharge Imperviousnest				
Name Deer Creek 0.0000 0.0000 Status Not Built 0.0270 0.0547 Type of Control 0.0590 0.1558 Drainage Area (ha) 15.16 0.0780 0.2666 Imperviousness 32% 0.0860 0.3253 Development Type Residential 0.1380 0.4278 Drainage from Subcatchment 178A 0.1380 0.4278 NHYD in Model 0 0 0 0 In Scenario Future, pre-dev, ROPA Discharge Storage Pond # Beechridge 0.0140 1.0650 Name Beechridge 0.0140 1.0650 Type of Control 0.1280 1.3252 0.3500 1.6299 Imperviousness 81% 0.3500 1.6299 0.9010 1.7163 Development Type Residential and employment 0.9010 1.7163 Development Type Nesidential and employment			Discharge	Storage
Status Not Built 0.0000 0.0000 0.0000 Type of Control 0.0270 0.0547 0.0590 0.1558 Drainage Area (ha) 15.16 0.0780 0.2666 Imperviousness 32% 0.0860 0.3253 Development Type Residential 0.1380 0.4278 Drainage from Subcatchment 178A 0.1380 0.4278 NHYD in Model 0 0 0 0.0000 0.0000 In Scenario Future, pre-dev, ROPA Discharge Storage Pond # Residentide 0.0140 1.0650 Name Beechridge 0.0140 1.0650 Status Not Built 0.0140 1.0252 Drainage Area (ha) 36.88 0.3500 1.6299 Imperviousness 81% 0.9010 1.7163 Development Type Residential and employment 0.9010 1.7163	Pond #		(m3/s)	(ha.m)
Type of Control 0.0210 0.0210 0.0210 0.0210 0.0210 0.0210 0.0511 0.05210 0.0511 0.05210 0.0511 0.05210 0.03500 0.02105 0.0210 0.1380 0.4278 0.03500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0140 1.0650 0.1280 1.3252	Name	Deer Creek	0.0000	0.0000
Drainage Area (ha)15.160.07800.2666Imperviousness32%0.08600.3253Development TypeResidential0.13800.4278Drainage from Subcatchment178A0.13800.4278NHYD in Model0000In ScenarioFuture, pre-dev, ROPA00Pond #Beechridge0.00000.0000NameBeechridge0.01401.0650Type of ControlNot Built0.12801.3252Drainage Area (ha)36.880.35001.6299Imperviousness81%0.90101.7163Development TypeResidential and employment0.90101.7163	Status	Not Built	0.0270	0.0547
Imperviousness32%0.08600.3253Development TypeResidential0.13800.4278Drainage from Subcatchment178A0NHYD in Model00In ScenarioFuture, pre-dev, ROPADischargePond #Beechridge0.0000NameBeechridge0.0140StatusNot Built0.0140Type of Control36.880.3253Drainage Area (ha)36.880.3200Imperviousness81%0.9010Development TypeResidential and employmentDrainage from Subcatchment152	Type of Control		0.0590	0.1558
Development TypeResidential0.00000.0203Development TypeResidential00.13800.4278Drainage from Subcatchment178A00In ScenarioFuture, pre-dev, ROPADischargeStoragePond #Beechridge0.00000.0000NameBeechridge0.01401.0650StatusNot Built0.12801.3252Drainage Area (ha)36.880.35001.6299Imperviousness81%0.90101.7163Development TypeResidential and employment0.90101.7163	Drainage Area (ha)	15.16	0.0780	0.2666
Drainage from Subcatchment178A0NHYD in Model00In ScenarioFuture, pre-dev, ROPAPond #Beechridge0.0000NameBeechridge0.0140StatusNot Built0.0140Type of Control36.880.3500Drainage Area (ha)36.880.3500Development TypeResidential and employmentDrainage from Subcatchment152	mperviousness	32%	0.0860	0.3253
NHYD in Model In Scenario0 Future, pre-dev, ROPADischargeStorage (m3/s)Pond # NameBeechridge0.00000.0000StatusNot Built0.01401.0650Type of Control0.01401.0650Drainage Area (ha)36.880.35001.6299Imperviousness81%0.90101.7163Development TypeResidential and employment152152	Development Type	Residential	0.1380	0.4278
In ScenarioFuture, pre-dev, ROPADischargeStorage (m3/s)Pond #Beechridge0.00000.0000NameBeechridge0.01401.0650StatusNot Built0.01401.0650Type of Control0.012801.3252Drainage Area (ha)36.880.35001.6299Imperviousness81%0.90101.7163Development TypeResidential and employment0.90101.7163	Drainage from Subcatchment	178A		
Pond #Discharge (m3/s)Storage (m3/s)NameBeechridge0.00000.0000StatusNot Built0.01401.0650Type of Control0.12801.3252Drainage Area (ha)36.880.35001.6299Imperviousness81%0.90101.7163Development TypeResidential and employment152	NHYD in Model	0		
Pond # (m3/s) (ha.m) Name Beechridge 0.0000 0.0000 Status Not Built 0.0140 1.0650 Type of Control 0.1280 1.3252 Drainage Area (ha) 36.88 0.3500 1.6299 Imperviousness 81% 0.9010 1.7163 Development Type Residential and employment 152	n Scenario	Future, pre-dev, ROPA		
Pond # (m3/s) (ha.m) Name Beechridge 0.0000 0.0000 Status Not Built 0.0140 1.0650 Type of Control 0.1280 1.3252 Drainage Area (ha) 36.88 0.3500 1.6299 Imperviousness 81% 0.9010 1.7163 Development Type Residential and employment 152				
Name Beechridge 0.0000 0.0000 Status Not Built 0.0140 1.0650 Type of Control 0.1280 1.3252 Drainage Area (ha) 36.88 0.3500 1.6299 Imperviousness 81% 0.9010 1.7163 Development Type Residential and employment 152 1.3252			-	-
Status Not Built 0.0140 1.0650 Type of Control 0.1280 1.3252 Drainage Area (ha) 36.88 0.3500 1.6299 Imperviousness 81% 0.9010 1.7163 Development Type Residential and employment 152 1.52			, ,	
Type of Control0.1000Drainage Area (ha)36.880.35001.6299Imperviousness81%0.90101.7163Development TypeResidential and employment152152		-	0.0000	0.0000
Drainage Area (ha)36.880.35001.6299Imperviousness81%0.90101.7163Development TypeResidential and employmentDrainage from Subcatchment152		Not Built	0.0140	1.0650
Imperviousness81%0.90101.7163Development TypeResidential and employmentDrainage from Subcatchment152			0.1280	1.3252
Development Type Residential and employment Drainage from Subcatchment 152		36.88	0.3500	1.6299
Drainage from Subcatchment 152	•			
	Development Type	81%	0.9010	1.7163
NHYD in Model 6207	Development Type		0.9010	1.7163
		Residential and employment	0.9010	1.7163
In Scenario Future, pre-dev, ROPA	Drainage from Subcatchment	Residential and employment 152	0.9010	1.7163
	Drainage from Subcatchment NHYD in Model	Residential and employment 152 6207	0.9010	1.7163

APPENDIX D Model Input Parameters

Land Use	TIMP	XIMP
Estate Residential	0.14	0.09
Low Density Residential	0.45	0.24
Medium Density Residential	0.55	0.35
High Density Residential	0.64	0.35
Institutional	0.55	0.3
Industrial	0.9	0.9
Commercial/Business	0.9	0.9
Agricultural	0	0
Natural Area	0	0
Open Space	0.01	0.01
Cemetery	0.01	0.01
Recreational	0.2	0.2
Open Water	1	1
Railway	0.5	0.5
Highway	1	1
Golf Course	0.01	0.01

TIMP and XIMP values were taken from "Carruthers Creek Hydrology Update for Toronto and Region Conservation Authority", March 2007 by Philips Engineering with the exception of the medium density residential and the industrial values, which were based on research and recommendations from the TRCA.

APPENDIX D-1 2008 Existing Condition Model Input Parameters

2008 Existing Condition NASHYD Model Input

	Unit	Description	105	108	112	117	129	134	139	140	143	151	152 1	52F	1521	153	154	157	158	160
DT	min	Time Step Increment		•					-	-	5	·		•	•	·				
Area	ha	Watershed Area	23.6	72.9	37.26	61.59	76.78	90.89	22.44	22.58	39.43	27.29	102.83	13.21	12.82	29.73	18.48	17.93	14.49	18.35
DWF	m3/s	Dry Weather Flow (Base Flow)									0									
CN* (AMC	; -	SCS Modified Curve Number (CN*)	76.7	76.1	76.1	75.6	76.7	79.8	74.6	75.6	76.7	76.7	64.1	81.9	78.8	77.7	68.8	52.5	68.8	68.3
CN* (AMC	; -	SCS Modified Curve Number (CN*)	88.7	88.5	88.5	88.1	88.7	91	87.5	88	88.7	88.7	81.1	91.4	89.8	89.5	84	71.5	83.81	83.5
IA	mm	Initial Abstraction	4.3	4.4	4.8	4.6	4.7	4.6	4.1	4.1	4.3	4.3	4.2	4	4	4	4.4	4.9	4.3	4.3
Ν	-	Number of Linear Reservoir									3									
TP	hr	Unit Hydrograph Time to Peaks	3.21	1.3	2.35	2.62	3.88	2.99	3.37	1.78	2.95	1.89	5.26	0.4	1.46	4.68	3.2	6.48	2.6	2.87
Rain	mm/h	Optional Rainfall Intensities								•	0 - Withou	ut Rain				•				

	Unit	Description	161	162	164	170	171	172	173	174	175	176	177	178	179	180	181	182	183
DT	min	Time Step Increment									5	-	-	- -				•	
Area	ha	Watershed Area	10.08	8.46	5.14	51.64	360.73	21.41	50.29	336.31	244.69	78.4	67.03	46.85	94.63	127.29	118.67	281.36	176.21
DWF	m3/s	Dry Weather Flow (Base Flow)			·						0	-	•	-					
CN* (AN	1C -	SCS Modified Curve Number (CN*)	51.5	53.0	52.5	80.9	66.2	79.8	79.8	73.5	76.1	69.3	56.7	57.2	61.4	63.0	74.0	76.7	75.6
CN* (AN	1C -	SCS Modified Curve Number (CN*)	71	72	71.5	91.5	82.5	91	91	87.5	88.5	84	74.5	85	78.5	80	87.5	88.7	88
IA	mm	Initial Abstraction	4.8	4.5	4.4	3.9	4.2	4.1	4.1	3.8	4.2	3.8	4	3.8	4.5	4.5	4.4	4.1	4.3
Ν	-	Number of Linear Reservoir			·						3	-	•	-					
TP	hr	Unit Hydrograph Time to Peaks	0.55	0.96	1.03	1.37	3.62	5.36	4.06	8.17	8.02	4.41	5.59	2.52	4.68	3.8	4.55	9.88	5.98
Rain	mm/h	Optional Rainfall Intensities	·	•					·	0 - V	Vithout Rain	1						<u>.</u>	

2008 Existing Condition STANDHYD Model Input

Subcatchment	Unit	Description	101	102	103	104	106	107	110	111	112A	113	114	115	116	118	119	120	121	122
DT	min	Time Step Increment									5									
Area	ha	Watershed Area	30.52	22.4	26.2	13.85	9.4	22.7	32.7	8.5	5.92	55	13.4	16.2	6.66	29.37	4.46	24.07	11.44	44.13
XIMP		Directly Connected Impervious Area	0.3	0.27	0.26	0.23	0.23	0.21	0.32	0.19	0.21	0.34	0.28	0.21	0.27	0.25	0.2	0.23	0.57	0.38
TIMP		Total Impervious Area Fraction	0.33	0.5	0.47	0.45	0.45	0.39	0.53	0.37	0.41	0.63	0.53	0.37	0.47	0.45	0.38	0.46	0.58	0.47
DWF	m3/s	Dry Weather Flow (Base Flow)									0									
CN* (AMC II)		SCS Modified Curve Number (CN*)	75	77	77	77	77	77	74	64	76	77	76	76	75	76	75	77	79	73
CN* (AMC III)			88.6	89.2	89.2	89.2	89.2	89.2	87.5	81.2	88.4	89.2	88.3	88.3	88.4	88.9	88.3	89.2	90.81	87.3
IA		Initial Abstraction	4.2	3.1	3	3	3	3	3	3.3	89.2	3	3.4	3.4	3.1	3	3.3	3	3.2	3
SLPP	%	Average Slope of Pervious Area									2									
LGP	m	Overland Flow Length for Pervious Areas									40									
MNP		Manning's Roughness Coefficient for Pervious Areas									0.25									
SCP	hr	Storage Coefficient for Linear Reservoir for the Pervious Area									0									
DPSI	mm/hr	Impervious Area Depression Storage									1									
SLPI	%	Average Slope of Impervious Area	0.1	0.5	0.4	0.4	0.5	0.8	2	0.5	1.3	0.8	0.8	0.8	0.5	1	1	1.5		0.5
LGI		A=1.5*L^2	461.2	349.6	437.6	304.4	245.2	368.8	483.4	259.5	207	622.3	298.8	364.2	209.9	436.7	170.9	399		528.7
MNI		Manning's Roughness Coefficient for Impervious Areas									0.013									
SCI	hr	Storage Coefficient for Linear Reservoir for the Impervious Area									0									
Rain	mm/hr	Optional Rainfall Intensities								0 - V	Vithout Rain									

Subcatchment	Unit	Description	123	124	125	126	127	128	129A	137	138	142	145	156	159	160A	163	165	166	167
DT	min	Time Step Increment									5	=								
Area	ha	Watershed Area	8.17	7.3	19.32	20.28	64.88	10.85	53.7	43.07	21.32	26.2	49.12	59.66	3.94	18.17	21	23.12	44.27	12.02
XIMP		Directly Connected Impervious Area	0.24	0.9	0.37	0.54	0.61	0.45	0.83	0.52	0.85	0.3	0.25	0.25	0.31	0.31	0.32	0.3	0.23	0.31
TIMP		Total Impervious Area Fraction	0.34	0.9	0.54	0.66	0.67	0.45	0.83	0.64	0.85	0.35	0.46	0.45	0.57	0.57	0.6	0.55	0.45	0.57
DWF	m3/s	Dry Weather Flow (Base Flow)									0									
CN* (AMC II)		SCS Modified Curve Number (CN*)	65	64.5	64.5	61	58.5	53	76	67.5	64.5	76	66	61.5	55	64.5	66.5	77	55	55
CN* (AMC III)			82	81.1	81.1	78.1	76.1	70.9	88.8	85.6	80.9	88.7	82.1	78.3	73.3	73.1	82.5	88.9	73.5	76.5
IA		Initial Abstraction	3	3	3	3	3.3	4	3.1	3	3	5	3	3	3	3.4	3	3	3	3
SLPP	%	Average Slope of Pervious Area									2									
LGP	m	Overland Flow Length for Pervious Areas									40									
MNP		Manning's Roughness Coefficient for Pervious Areas									0.25									
SCP	hr	Storage Coefficient for Linear Reservoir for the Pervious Area									0									
DPSI	mm/hr	Impervious Area Depression Storage									1									
SLPI	%	Average Slope of Impervious Area	0.5	0.9	0.9	1.3	1.4	1.9	1	1.1	0.3	1.6	3	1.2	1	1	0.8	0.8	2.2	2.5
LGI		A=1.5*L^2	227.4	219.1	357.5	361.2	660.4	271.4	598	531.7	345.2	458.4	553.5	630.6	157.9	348.1	413	420.6	574.4	283.1
MNI		Manning's Roughness Coefficient for Impervious Areas									0.013									
SCI	hr	Storage Coefficient for Linear Reservoir for the Impervious Area									0									
Rain	mm/hr	Optional Rainfall Intensities								0 - V	/ithout Rain									

APPENDIX D-2 Pre-Development Model Input Parameters

Predevelopment Condition NASHYD Model Input

	1.1.1.1	B : <i>i</i>	405	100	4.4.0	4.47	4 4 7 4	100	100	100	400	400	40.4	400	4004	4.40		1.40	454
Subcatchment	Unit	Description	105	108	112	117	117A	128	129	130	132	133	134	139	139A	140	141	143	151
DT	min	Time Step Increment													5				
Area	ha	Watershed Area	23.60	46.27	37.26	51.06	9.76	11.26	54.07	15.9	4.31	13.26	63.52	27	27.61	9.86	12.56	13.93	17.24
DWF	m3/s	Dry Weather Flow (Base Flow)													0				
CN* (AMC II)	-	SCS Modified Curve Number (CN*)	75.6	74	76.7	75.6	77.7	58.8	76.7	81.6	81.9	85.5	77.7	78.8	72.5	64.1	77.7	72.5	68.8
CN* (AMC III)		SCS Modified Curve Number (CN*)	88.1	87.5	88.7	88.1	89.2	76.8	88.7	91.4	91.4	93.4	89.2	89.8	86.3	81.1	89.2	86.3	84
IA	mm	Initial Abstraction	4.4	4.6	4.8	4.6	4.6	3.5	4.7	4.4	4.4	4	4.6	4	4	5	3.9	5	4.7
Ν	-	Number of Linear Reservoir													3				
TP	hr	Unit Hydrograph Time to Peaks	3.22	5.31	2.35	0.52	0.27	2.09	1.84	0.63	0.43	0.39	3.86	3.02	2.69	1.27	0.32	0.68	2.38
Rain	mm/h	Optional Rainfall Intensities												0 - W	ithout Rain				

Subcatchment	Unit	Description	152H	153D	153E	157	161	162	164	170	171	172	173	174	175	176	177	178	178B
DT	min	Time Step Increment		•			•							5		•	•		
Area	ha	Watershed Area	16.47	4.60	2.57	19.55	10.09	8.46	5.14	51.64	360.73	21.41	50.29	336.31	244.69	56.53	67.03	35.31	18.37
DWF	m3/s	Dry Weather Flow (Base Flow)												0					
CN* (AMC II)	-	SCS Modified Curve Number (CN*)	79.8	76.13	76.13	51.5	50.9	52.5	50.9	80.9	67.2	77.7	75.6	74.6	75.6	68.3	59.9	57.2	54
CN* (AMC III)		SCS Modified Curve Number (CN*)	90.3	88.5	88.5	71.1	70.2	71.9	70.2	90.8	83.2	89.2	88.1	87.5	88.1	83.8	77.5	76	73.6
IA	mm	Initial Abstraction	4.1	5	5	4.5	5	4.5	5	3.7	4.1	4.2	3.6	4.3	4.2	3.5	3.8	3.3	4.8
Ν	-	Number of Linear Reservoir												3					
TP	hr	Unit Hydrograph Time to Peaks	3.66	0.11	0.16	6.1	0.55	0.96	1.03	3.41	3.58	5.43	4.28	8.28	8.02	3.29	5.46	2.35	3.45
Rain	mm/h	Optional Rainfall Intensities												0 - Without	Rain				

1	151A	152A	152B	152C	152D
24	5.88	9.18	7.00	10.79	5.81
8	76.1	53.6	62.5	60.9	58.8
	88.7	72.8	79.5	78.3	76.8
,	4	4.7	4.5	3.2	3.6
8	4.15	2.11	2.18	2.64	2.34
В	179	180	181	182	183
37	94.63	125.58	118.67	281.36	176.21
	52.5	59.9	73.5	74.6	75.6
6	71.9	77.5	86.9	87.5	88.1
3	4.6	4.4	4.4	4.3	3.9
5	4.73	3.72	4.55	9.07	5.98
	•				

Predevelopment Condition STANDHYD Model Input

	Unit	Description	101	102	103	104	106	107	109	110	111	112A	113	114	115	116	118	119	120	121	122	123	124	125	126A	Т
DT	min	Time Step Increment													5	5										_
Area	ha	Watershed Area	30.52	22.4	26.2	13.85	9.4	22.7	22	32.7	8.5	5.92	55	13.4	16.2	6.66	29.37	4.38	23.88	26.77	44.4	7.76	7.3	19.17	5.5	Т
XIMP	-	Directly Connected Impervious Area	0.27	0.27	0.24	0.23	0.23	0.21	0.18	0.27	0.18	0.19	0.34	0.21	0.27	0.27	0.23	0.54	0.25	0.57	0.38	0.24	0.63	0.54	0.26	Т
TIMP	-	Total Impervious Area Fraction	0.27	0.5	0.45	0.45	0.45	0.39	0.34	0.48	0.35	0.35	0.63	0.39	0.48	0.47	0.41	0.55	0.45	0.58	0.47	0.34	0.73	0.65	0.47	T
DWF	m3/s	Dry Weather Flow (Base Flow)													C)									-	
CN* (AMC II)	-	SCS Modified Curve Number (CN*)	76.0	77	77	77	77	77	74.0	74	64.0	76.0	77	76.0	76.0	75	75	75.0	77	80.0	73	65	64.5	64.5	54.0	Т
CN* (AMC III)	-	SCS Modified Curve Number (CN*)	90.3	89.2	89.2	89.2	89.2	89.2	87.5	87.5	81.2	90.3	89.2	90.3	90.3	88.4	88.9	88.3	89.2	90.9	87.3	82	83.2	83.2	73.8	Т
IA	-	Initial Abstraction	4.5	3.1	3	3	3	3	3.5	3	3.5	3	3	3	3	3	3	3	3	3.2	3	3	3	3	3	Т
SLPP	%	Average Slope of Pervious Area													2	2										
LGP	m	Overland Flow Length for Pervious Areas													4	0										
MNP	-	Manning's Roughness Coefficient for Pervious Areas													0.2	25										
SCP	hr	Storage Coefficient for Linear Reservoir for the Pervious Area													C)										-
DPSI	mm/hr	r Impervious Area Depression Storage													1											
SLPI	%	Average Slope of Impervious Area	0.1	0.5	0.4	0.4	0.5	0.8	2	2	0.5	1.3	0.8	2	0.8	0.5	1	1	2	2	0.5	0.5	2	2	2	Т
LGI	-	A=1.5*L^2	451.1	360.6	440.2	303.9	245.6	368.9	421.3	483.4	264.6	198.7	622.3	300	364.1	210.7	442.5	172.4	400.6	296.9	543.6	233.4	240.1	352.6	191.5	Т
MNI	-	Manning's Roughness Coefficient for Impervious Areas													0.0	13										
SCI	hr	Storage Coefficient for Linear Reservoir for the Impervious Area													C)										
Rain	mm/hr	r Optional Rainfall Intensities													0 - Witho	out Rain										-
•		•																							-	
	Unit	Description	127A	129A	135	136	137	138	142	145	145A	152	152F	1521	153	153A	153B	153C	156	156A	159	160	160A	163	165	Т

	Unit	Description	127A	129A	135	136	137	138	142	145	145A	152	152F	1521	153	153A	153B	153C	156	156A	159	160	160A	163	165	1
DT	min	Time Step Increment													5											_
Area	ha	Watershed Area	8.01	53.7	12.31	37.39	11.87	14.9	26.2	30.42	18.7	36.88	13.21	12.82	16.7	20.34	1.78	4.53	38.42	18.88	3.94	18.35	18.17	21	23.12	Г
XIMP		Directly Connected Impervious Area	0.9	0.84	0.26	0.62	0.53	0.85	0.64	0.21	0.56	0.77	0.9	0.9	0.68	0.53	0.99	0.77	0.21	0.32	0.18	0.22	0.15	0.21	0.17	ſ
TIMP	-	Total Impervious Area Fraction	0.9	0.84	0.44	0.71	0.61	0.85	0.64	0.39	0.59	0.81	0.9	0.9	0.71	0.56	0.99	0.79	0.39	0.6	0.33	0.58	0.41	0.37	0.3	Г
DWF		Dry Weather Flow (Base Flow)													0											
CN* (AMC II)	-	SCS Modified Curve Number (CN*)	64.0	76.0	77.0	74.0	68.7	64.1	76.0	66.0	72.5	59.5	71.0	65.0	71.9	72.5	72.5	72.5	59.5	43.3	55	55.0	55.0	70.0	77	Г
CN* (AMC III)	-	SCS Modified Curve Number (CN*)	83.2	88.8	89	88.1	84	80.5	90.3	84.5	86.5	79.7	86	83.8	86	86.5	86.5	86.5	79.7	63.5	76	76	76	86.9	90.8	Γ
IA	-	Initial Abstraction	3	3.1	5	3	3	4.8	3.1	3	5	3	3	3	5	5	5	5	3.1	5	3	3	3.1	3.1	3	ſ
SLPP	%	Average Slope of Pervious Area													2											
LGP	m	Overland Flow Length for Pervious Areas													40)										
MNP	-	Manning's Roughness Coefficient for Pervious Areas													0.2	25										
SCP	hr	Storage Coefficient for Linear Reservoir for the Pervious Area													0											
DPSI	mm/hr	Impervious Area Depression Storage													1											
SLPI	%	Average Slope of Impervious Area	2	2	0.3	2	1.1	0.3	2	2	2.3	2	2	2	1.6	2.5	1.1	1	2	1.2	2	2	2	0.8	0.8	Γ
LGI	-	A=1.5*L^2	231.1	605.6	286.5	499.3	281.3	315.2	468.2	450.2	941**	495.8	217.7	306.1	1114**	903**	108.9	173.8	506.1	354.8	156.2	349.8	348	411.4	422.1	ſ
MNI		Manning's Roughness Coefficient for Impervious Areas													0.0	13										
SCI		Storage Coefficient for Linear Reservoir for the Impervious Area													0											
Rain	mm/hr	Optional Rainfall Intensities													0 - Witho	out Rain										

A	126B	126C	127
	10.3	2.6	69.73
6	0.44	0.28	0.77
6 7	0.56	0.49	0.81
) 3	59	54	58.5
3	77.8	73.8	79
	3	3	3
			_
	2	2 131.7	2
5	262	131.7	681.8
			_
			_
5	166	167	178A
2	44.27	12.02	15.16
2	0.27	0.21	0.12
	0.44	0.39	0.32
	55	53	55
3	76	73.2	76
	3	3	3.8
	2.2	2	2
1	574.5	281.5	317.9

APPENDIX D-3 Approved Official Plan Future Condition Model Input Parameters

Future Condition NASHYD Model Input

Subcatchment	Unit	Description	105	108	112	117	129	134	140	143	151	152B	152E	153D	153E	157	161	162
DT	min	Time Step Increment		-	•	-		-			5		-	•			-	
Area	ha	Watershed Area	23.60	46.27	37.26	51.06	54.07	63.52	9.86	13.93	17.24	7.00	27.67	4.60	2.57	19.55	10.09	8.46
DWF	m3/s	Dry Weather Flow (Base Flow)		-	•	-		-			0		-	•			-	
CN* (AMC II)	-	SCS Modified Curve Number (CN*)	75.6	74	76.7	75.6	76.7	77.7	64.1	72.5	68.8	62.5	67.2	76.13	76.13	51.5	50.9	52.5
CN* (AMC III)		SCS Modified Curve Number (CN*)	88.1	87.5	88.7	88.1	88.7	89.2	81.1	86.3	84	79.5	83.2	88.5	88.5	71.1	70.2	71.9
IA	mm	Initial Abstraction	4.4	4.6	4.8	4.6	4.7	4.6	5	5	4.7	4.5	4.9	5	5	4.5	5	4.5
Ν	-	Number of Linear Reservoir									3							
TP	hr	Unit Hydrograph Time to Peaks	3.22	5.31	2.35	0.52	1.84	3.86	1.27	0.68	2.38	2.18	4.86	0.11	0.16	6.1	0.55	0.96
Rain	mm/h	Optional Rainfall Intensities		-				-		0 - V	Vithout Rain							

Subcatchment	t Unit	Description	164	170	171	172	173	174	175	176	177	178	178B	179	180	181	182	183
DT	min	Time Step Increment									5							
Area	ha	Watershed Area	5.14	51.64	360.73	21.41	50.29	336.31	244.69	56.53	67.03	35.31	18.37	94.63	125.58	118.67	281.36	176.21
DWF	m3/s	Dry Weather Flow (Base Flow)									0							
CN* (AMC II)	-	SCS Modified Curve Number (CN*)	50.9	80.9	67.2	77.7	75.6	74.6	75.6	68.3	59.9	57.2	54	52.5	59.9	73.5	74.6	75.6
CN* (AMC III)		SCS Modified Curve Number (CN*)	70.2	90.8	83.2	89.2	88.1	87.5	88.1	83.8	77.5	76	73.6	71.9	77.5	86.9	87.5	88.1
IA	mm	Initial Abstraction	5	3.7	4.1	4.2	3.6	4.3	4.2	3.5	3.8	3.3	4.8	4.6	4.4	4.4	4.3	3.9
Ν	-	Number of Linear Reservoir									3							
TP	hr	Unit Hydrograph Time to Peaks	1.03	3.41	3.58	5.43	4.28	8.28	8.02	3.29	5.46	2.35	3.45	4.73	3.72	4.55	9.07	5.98
Rain	mm/h	Optional Rainfall Intensities								0 - V	/ithout Rain							

Future Condition STANDHYD Model Input

													1						1				Lines						
	Unit	Description	101	102	103	104	106	107	109	110	111 112A	113	114	115 116	117A	118	119 120	121	122	123	124	125 126A	126B	126C	127	127A	128 129	9A	130 132
DT	min	Time Step Increment															5												
Area	ha	Watershed Area	30.52	22.4	26.2	13.85	9.4	22.7	22	32.7	8.5 5.92	55	13.4	16.2 6.66			4.38 23.88		44.4	7.76	7.3	19.17	5.5	10.3 2.	6 69.73	8.01	11.26	53.7	15.9 4.31
XIMP	-	Directly Connected Impervious Area	0.27	0.27	0.24	0.23	0.23	0.21	0.18	0.21	0.18 0.19	0.34	÷.=.	0.27 0.27		0.23	0.54 0.25	0.57	0.38	0.24	0.63	0.0 .		0.44 0.2	8 0.77	0.9	0.9	0.84	0.63 0.82
TIMP	-	Total Impervious Area Fraction	0.27	0.5	0.45	0.45	0.45	0.39	0.34	0.48	0.35 0.35	0.63	0.39	0.48 0.47	0.56	0.41	0.55 0.45	0.58	0.47	0.34	0.73	0.65	0.47	0.56 0.4	9 0.81	0.9	0.9	0.84	0.73 0.82
DWF	m3/s	Dry Weather Flow (Base Flow)														1)												
CN* (AMC II)		SCS Modified Curve Number (CN*)	76.0	77	77	77	77	77	74.0	74	64.0 76.0	77	76.0	76.0 75	76.0	75	75.0 77	80.0	73	65	64.5	64.5	54.0	59 5	4 58.5	64.0	73.5	76.0	76.0 78.0
CN* (AMC III) -	SCS Modified Curve Number (CN*)	90.3	89.2	89.2	89.2	89.2	89.2	87.5	87.5	31.2 90.3	89.2	90.3	90.3 88.4	88.5	88.9	88.3 89.2	90.9	87.3	82	83.2	83.2	73.8	77.8 73.	8 79	83.2	79.7	88.8	88.5 90.1
IA	-	Initial Abstraction	4.5	3.1	3	3	3	3	3.5	3	3.5 3	3	3	3 3	3	3	3 3	3.2	3	3	3	3	3	3	3 3	3	3	3.1	3 3
SLPP	%	Average Slope of Pervious Area															2												
LGP	m	Overland Flow Length for Pervious Areas														4	0												
MNP	-	Manning's Roughness Coefficient for Pervious Areas														0.	25												
SCP	hr	Storage Coefficient for Linear Reservoir for the Pervious Area)												
DPSI	mm/hr	r Impervious Area Depression Storage																											
SLPI	%	Average Slope of Impervious Area	0.1	0.5	0.4	0.4	0.5	0.8	2	2	0.5 1.3	0.8	2	0.8 0.5	2	1	1 2	2	0.5	0.5	2	2	2	2	2 2	2	2	2	2 2
LGI	-	A=1.5*L^2	451.1	360.6	440.2	303.9	245.6	368.9	421.3	483.4 2	64.6 198.7	622.3	300	364.1 210.7	255.1	442.5 1	72.4 400.6	296.9	543.6	233.4	240.1	352.6 1	191.5	262 131	7 681.8	231.1	274	605.6	325.6 169.5
MNI	-	Manning's Roughness Coefficient for Impervious Areas														0.0	13												
SCI	hr	Storage Coefficient for Linear Reservoir for the Impervious Area														0.0)												
Rain	mm/br	r Optional Rainfall Intensities														0 - With	- out Rain												
	11111/111															0 111	Jut I tull												
. team	11111/11	optional raintair monotoo														0 111													
			135	136	137	138	130 130	0.0	1/1	142	145 1454 1	514	152 1524	1520	152D 15			153 16	34 15	3B 1530	<u></u>	156 1564		159 16	0 160 4	163	165	166	167 1784
DT	Unit	Description	135	136	137	138	139 139	9A	141	142	145 145A 1	51A	152 152A	152C	152D 15			153 15	53A 15	3B 1530	C	156 156A		159 16	0 160A	163	165	166	167 178A
DT	Unit min	Description Time Step Increment			137	138	139 139	9A				51A				2F 152H	1521	153 15		3B 1530	C 4.52	156 156A	10 00	159 16	0 160A	163			5
DT Area	Unit	Description Time Step Increment Watershed Area	12.31	37.39	137 11.87	14.9	27	9A 27.61	12.56	26.2 3	0.42 18.7	23.1	36.88	9.18 10.79	5.81	2F 152H	152I 6.47 12.82	16.7	20.34	1.78	4.53	38.42 1	18.88	3.94 18.3	5 18.17	21	23.12	44.27	5 12.02 15.16
XIMP	Unit min	Description Time Step Increment Watershed Area Directly Connected Impervious Area	12.31 0.26	37.39 0.62	0.53	14.9 0.85	139 139 27 0.9	9A 27.61 0.9	12.56 0.88	26.2 3 0.64	0.42 18.7 0.21 0.56	23.1 0.9	36.88 0.77	9.18 10.79 0.26 0.5 ⁷	5.81	2F 152H 13.21 1 0.9	1521	153 15 16.7 0.68	20.34 0.53	1.78 0.99	4.53 0.77	38.42 1 0.21	18.88	3.94 18.3 0.18 0.2	5 18.17 2 0.15	21 0.21	23.12 0.17	44.27 0.27	5 12.02 15.16 0.21 0.12
XIMP TIMP	Unit min ha -	Description Time Step Increment Watershed Area Directly Connected Impervious Area Total Impervious Area Fraction	12.31	37.39		14.9	27	9A 27.61 0.9 0.9	12.56	26.2 3 0.64	0.42 18.7	23.1	36.88 0.77	9.18 10.79	5.81	2F 152H	152I 6.47 12.82	16.7	20.34	1.78	4.53	38.42 1	18.88	3.94 18.3	5 18.17 2 0.15	21	23.12	44.27	5 12.02 15.16
XIMP TIMP DWF	Unit min ha - - m3/s	Description Time Step Increment Watershed Area Directly Connected Impervious Area Total Impervious Area Fraction Dry Weather Flow (Base Flow)	12.31 0.26 0.44	37.39 0.62	0.53	14.9 0.85 0.85	27	9A 27.61 0.9 0.9	12.56 0.88 0.89	26.2 30 0.64 0.64	0.42 18.7 0.21 0.56 0.39 0.59	23.1	36.88 0.77 0.81	9.18 10.79 0.26 0.57 0.26 0.56	5.81 0.9 0.9	2F 152H 13.21 1 0.9	1521 6.47 12.82 0.9 0.9 0.9 0.9	16.7	20.34 0.53 0.56	1.78 0.99	4.53	38.42 1 0.21 0.39	18.88	3.94 18.3 0.18 0.2 0.33 0.5	5 18.17 2 0.15 8 0.41	21 0.21	23.12 0.17	44.27 0.27	5 12.02 15.16 0.21 0.12
XIMP TIMP DWF CN* (AMC II)	Unit min ha - - m3/s -	Description Time Step Increment Watershed Area Directly Connected Impervious Area Total Impervious Area Fraction Dry Weather Flow (Base Flow) SCS Modified Curve Number (CN*)	12.31 0.26	37.39 0.62 0.71 74.0	0.53	14.9 0.85 0.85 64.1	27 0.9 0.9 62.5	27.61 0.9 0.9 62.0	12.56 0.88 0.89 64.0	26.2 3 0.64 0 0.64 0 76.0	0.42 18.7 0.21 0.56 0.39 0.59 66.0 72.5	23.1	36.88 0.77 0.81 59.5	9.18 10.79 0.26 0.5' 0.26 0.56 51.0 55.0	5.81 0.9 0.9 60.0	2F 152H 13.21 1 0.9 0.9 0 71.0	1521 6.47 12.82 0.9 0.9 0.9 0.9 66.0 65.0	16.7	20.34 0.53 0.56 72.5	1.78 0.99 0.99 72.5	4.53 0.77 0.79 72.5	38.42 1 0.21 0.39 59.5	18.88 0.32 0.6 43.3	3.94 18.3 0.18 0.2	5 18.17 2 0.15 8 0.41	21 0.21 0.37 70.0	23.12 0.17 0.3 77	44.27 0.27	5 12.02 15.16 0.21 0.12 0.39 0.32 53 55
XIMP TIMP DWF	Unit min ha - - m3/s -	Description Time Step Increment Watershed Area Directly Connected Impervious Area Total Impervious Area Fraction Dry Weather Flow (Base Flow) SCS Modified Curve Number (CN*) SCS Modified Curve Number (CN*)	12.31 0.26 0.44	37.39 0.62	0.53	14.9 0.85 0.85 64.1 80.5	27	9A 27.61 0.9 0.9 62.0 81.8	12.56 0.88 0.89	26.2 30 0.64 0 0.64 0 76.0 0 90.3 0	0.42 18.7 0.21 0.56 0.39 0.59	23.1	36.88 0.77 0.81	9.18 10.79 0.26 0.5' 0.26 0.56' 51.0 55.0 70.7 73.3	5.81 0.9 0.9 60.0	2F 152H 13.21 1 0.9 0.9 0 71.0	1521 6.47 12.82 0.9 0.9 0.9 0.9	16.7	20.34 0.53 0.56	1.78 0.99	4.53	38.42 1 0.21 0.39 59.5	18.88	3.94 18.3 0.18 0.2 0.33 0.5	5 18.17 2 0.15 8 0.41	21 0.21 0.37 70.0 86.9	23.12 0.17	44.27 0.27	5 12.02 15.16 0.21 0.12
XIMP TIMP DWF CN* (AMC II)	Unit min ha - - m3/s -	Description Time Step Increment Watershed Area Directly Connected Impervious Area Total Impervious Area Fraction Dry Weather Flow (Base Flow) SCS Modified Curve Number (CN*) SCS Modified Curve Number (CN*) Initial Abstraction	12.31 0.26 0.44	37.39 0.62 0.71 74.0	0.53	14.9 0.85 0.85 64.1	27 0.9 0.9 62.5	27.61 0.9 0.9 62.0	12.56 0.88 0.89 64.0	26.2 3 0.64 0 0.64 0 76.0	0.42 18.7 0.21 0.56 0.39 0.59 66.0 72.5	23.1	36.88 0.77 0.81 59.5	9.18 10.79 0.26 0.5' 0.26 0.56 51.0 55.0	5.81 0.9 0.9 60.0	2F 152H 13.21 1 0.9 0.9 0 71.0	1521 6.47 12.82 0.9 0.9 0.9 0.9 66.0 65.0	16.7	20.34 0.53 0.56 72.5	1.78 0.99 0.99 72.5	4.53 0.77 0.79 72.5	38.42 1 0.21 0.39 59.5	18.88 0.32 0.6 43.3	3.94 18.3 0.18 0.2 0.33 0.5	5 18.17 2 0.15 8 0.41	21 0.21 0.37 70.0	23.12 0.17 0.3 77	44.27 0.27	5 12.02 15.16 0.21 0.12 0.39 0.32 53 55
XIMP TIMP DWF CN* (AMC II) CN* (AMC III) IA SLPP	Unit min ha - - m3/s -	Description Time Step Increment Watershed Area Directly Connected Impervious Area Total Impervious Area Fraction Dry Weather Flow (Base Flow) SCS Modified Curve Number (CN*) SCS Modified Curve Number (CN*) Initial Abstraction Average Stope of Pervious Area	12.31 0.26 0.44	37.39 0.62 0.71 74.0	0.53	14.9 0.85 0.85 64.1 80.5	27 0.9 0.9 62.5	27.61 0.9 0.9 62.0	12.56 0.88 0.89 64.0	26.2 30 0.64 0 0.64 0 76.0 0 90.3 0	0.42 18.7 0.21 0.56 0.39 0.59 66.0 72.5	23.1	36.88 0.77 0.81 59.5	9.18 10.79 0.26 0.5' 0.26 0.56' 51.0 55.0 70.7 73.3	5.81 0.9 0.9 60.0	2F 152H 13.21 1 0.9 0.9 0 71.0 86 3 2	1521 6.47 12.82 0.9 0.9 0.9 0.9 66.0 65.0	16.7	20.34 0.53 0.56 72.5	1.78 0.99 0.99 72.5	4.53 0.77 0.79 72.5	38.42 1 0.21 0.39 59.5	18.88 0.32 0.6 43.3	3.94 18.3 0.18 0.2 0.33 0.5	5 18.17 2 0.15 8 0.41	21 0.21 0.37 70.0 86.9	23.12 0.17 0.3 77	44.27 0.27	5 12.02 15.16 0.21 0.12 0.39 0.32 53 55
XIMP TIMP DWF CN* (AMC III) CN* (AMC III) IA SLPP LGP	Unit min ha - - m3/s -	Description Time Step Increment Watershed Area Directly Connected Impervious Area Total Impervious Area Fraction Dry Weather Flow (Base Flow) SCS Modified Curve Number (CN*) SCS Modified Curve Number (CN*) Initial Abstraction Average Slope of Pervious Area Overland Flow Length for Pervious Areas	12.31 0.26 0.44	37.39 0.62 0.71 74.0	0.53	14.9 0.85 0.85 64.1 80.5	27 0.9 0.9 62.5	27.61 0.9 0.9 62.0	12.56 0.88 0.89 64.0	26.2 30 0.64 0 0.64 0 76.0 0 90.3 0	0.42 18.7 0.21 0.56 0.39 0.59 66.0 72.5	23.1	36.88 0.77 0.81 59.5	9.18 10.79 0.26 0.5' 0.26 0.56' 51.0 55.0 70.7 73.3	5.81 0.9 0.9 60.0	2F 152H 13.21 1 0.9 0.9 0 71.0 86 3 2 40	1521 6.47 12.82 0.9 0.9 0.9 0.9 66.0 65.0	16.7	20.34 0.53 0.56 72.5	1.78 0.99 0.99 72.5	4.53 0.77 0.79 72.5	38.42 1 0.21 0.39 59.5	18.88 0.32 0.6 43.3	3.94 18.3 0.18 0.2 0.33 0.5	5 18.17 2 0.15 8 0.41	21 0.21 0.37 70.0 86.9	23.12 0.17 0.3 77	44.27 0.27	5 12.02 15.16 0.21 0.12 0.39 0.32 53 55
XIMP TIMP DWF CN* (AMC II) CN* (AMC III) IA SLPP	Unit min ha - - m3/s -	Description Time Step Increment Watershed Area Directly Connected Impervious Area Total Impervious Area Fraction Dry Weather Flow (Base Flow) SCS Modified Curve Number (CN*) SCS Modified Curve Number (CN*) Nitial Abstraction Average Slope of Pervious Area Overland Flow Length for Pervious Areas Manning's Roughness Coefficient for Pervious Areas	12.31 0.26 0.44	37.39 0.62 0.71 74.0	0.53	14.9 0.85 0.85 64.1 80.5	27 0.9 0.9 62.5	27.61 0.9 0.9 62.0	12.56 0.88 0.89 64.0	26.2 30 0.64 0 0.64 0 76.0 0 90.3 0	0.42 18.7 0.21 0.56 0.39 0.59 66.0 72.5	23.1	36.88 0.77 0.81 59.5	9.18 10.79 0.26 0.5' 0.26 0.56' 51.0 55.0 70.7 73.3	5.81 0.9 0.9 60.0	2F 152H 13.21 1 0.9 0.9 0 71.0 86 3 2	1521 6.47 12.82 0.9 0.9 0.9 0.9 66.0 65.0	16.7	20.34 0.53 0.56 72.5	1.78 0.99 0.99 72.5	4.53 0.77 0.79 72.5	38.42 1 0.21 0.39 59.5	18.88 0.32 0.6 43.3	3.94 18.3 0.18 0.2 0.33 0.5	5 18.17 2 0.15 8 0.41	21 0.21 0.37 70.0 86.9	23.12 0.17 0.3 77	44.27 0.27	5 12.02 15.16 0.21 0.12 0.39 0.32 53 55
XIMP TIMP DWF CN* (AMC II) IA SLPP LGP MNP SCP	Unit min - - - m3/s - - % m - % m - - % hr	Description Time Step Increment Watershed Area Directly Connected Impervious Area Total Impervious Area Fraction Dry Weather Flow (Base Flow) SCS Modified Curve Number (CN*) SCS Modified Curve Number (CN*) Initial Abstraction Average Slope of Pervious Area Overland Flow Length for Pervious Areas Manning's Roughness Coefficient for Pervious Areas Storage Coefficient for Linear Reservoir for the Pervious Area	12.31 0.26 0.44	37.39 0.62 0.71 74.0	0.53	14.9 0.85 0.85 64.1 80.5	27 0.9 0.9 62.5	27.61 0.9 0.9 62.0	12.56 0.88 0.89 64.0	26.2 30 0.64 0 0.64 0 76.0 0 90.3 0	0.42 18.7 0.21 0.56 0.39 0.59 66.0 72.5	23.1	36.88 0.77 0.81 59.5	9.18 10.79 0.26 0.5' 0.26 0.56' 51.0 55.0 70.7 73.3	5.81 0.9 0.9 60.0	2F 152H 13.21 1 0.9 0.9 0 71.0 86 3 2 40	1521 6.47 12.82 0.9 0.9 0.9 0.9 66.0 65.0	16.7	20.34 0.53 0.56 72.5	1.78 0.99 0.99 72.5	4.53 0.77 0.79 72.5	38.42 1 0.21 0.39 59.5	18.88 0.32 0.6 43.3	3.94 18.3 0.18 0.2 0.33 0.5	5 18.17 2 0.15 8 0.41	21 0.21 0.37 70.0 86.9	23.12 0.17 0.3 77	44.27 0.27	5 12.02 15.16 0.21 0.12 0.39 0.32 53 55
XIMP TIMP DWF CN* (AMC III) CN* (AMC III) IA SLPP LGP	Unit min - - - m3/s - - % m - % m - - % hr	Description Time Step Increment Watershed Area Directly Connected Impervious Area Total Impervious Area Fraction Dry Weather Flow (Base Flow) SCS Modified Curve Number (CN*) SCS Modified Curve Number (CN*) Initial Abstraction Average Slope of Pervious Area Overland Flow Length for Pervious Areas Manning's Roughness Coefficient for Pervious Areas Storage Coefficient for Linear Reservoir for the Pervious Area Impervious Area Depression Storage	12.31 0.26 0.44	37.39 0.62 0.71 74.0	0.53	14.9 0.85 0.85 64.1 80.5	27 0.9 0.9 62.5	27.61 0.9 0.9 62.0	12.56 0.88 0.89 64.0	26.2 3 0.64 0 0.64 0 76.0 0 90.3 5	0.42 18.7 0.21 0.56 0.39 0.59 66.0 72.5	23.1	36.88 0.77 0.81 59.5	9.18 10.79 0.26 0.5' 0.26 0.56' 51.0 55.0 70.7 73.3	5.81 0.9 0.9 60.0	2F 152H 13.21 1 0.9 0.9 0 71.0 86 3 2 40	1521 6.47 12.82 0.9 0.9 0.9 0.9 66.0 65.0	16.7	20.34 0.53 0.56 72.5	1.78 0.99 0.99 72.5	4.53 0.77 0.79 72.5	38.42 1 0.21 0.39 59.5	18.88 0.32 0.6 43.3	3.94 18.3 0.18 0.2 0.33 0.5	5 18.17 2 0.15 8 0.41	21 0.21 0.37 70.0 86.9	23.12 0.17 0.3 77	44.27 0.27	5 12.02 15.16 0.21 0.12 0.39 0.32 53 55
XIMP TIMP DWF CN* (AMC II) IA SLPP LGP MNP SCP	Unit min - - - m3/s - - % m - % m - - % hr	Description Time Step Increment Watershed Area Directly Connected Impervious Area Total Impervious Area Fraction Dry Weather Flow (Base Flow) SCS Modified Curve Number (CN*) SCS Modified Curve Number (CN*) Initial Abstraction Average Slope of Pervious Area Overland Flow Length for Pervious Areas Manning's Roughness Coefficient for Pervious Areas Storage Coefficient for Linear Reservoir for the Pervious Area Impervious Area Average Slope of Impervious Storage Average Slope of Impervious Area	12.31 0.26 0.44 77.0 89 5	37.39 0.62 0.71 74.0 88.1 3	0.53 0.61 68.7 84 3	14.9 0.85 0.85 64.1 80.5 4.8	27 0.9 0.9 62.5 81.8 3	27.61 0.9 0.9 62.0 81.8 3	12.56 0.88 0.89 64.0 83.2 3	26.2 3 0.64 0 0.64 0 90.3 3 3.1 2 2	2 18.7 0.21 0.56 0.39 0.59 66.0 72.5 34.5 86.5 3 5 2 2.3	23.1 0.9 0.9 58.5 76.2 3	36.88 0.77 0.81 59.5 79.7 3	9.18 10.73 0.26 0.55 0.26 0.56 0.51.0 55.0 70.7 73.3 4.4 3	5.81 0.9 0.9 60.0 76.8 3	2F 152H 13.21 1 0.9 0 71.0 86 3 2 40 0.25 0 1 2	1521 6.47 12.82 0.9 0.9 0.9 0.9 66.0 65.0 84.5 83.8 3 3 2 2	16.7 0.68 0.71 71.9 86 5	20.34 0.53 0.56 72.5 86.5 5 2.5	1.78 0.99 0.99 72.5 86.5 5	4.53 0.77 0.79 72.5 86.5 5	38.42 1 0.21 0.39 59.5 79.7 3.1 2	18.88 0.32 0.6 43.3 63.5 5 1.2	3.94 18.3 0.18 0.2 0.33 0.5 55 55 76 7 3	5 18.17 2 0.15 8 0.41 0 55.0 6 76 3 3.1 2 2 2	21 0.21 0.37 70.0 86.9 3.1	23.12 0.17 0.3 77 90.8 3 0.8	44.27 0.27 0.44 55 76 3	5 12.02 15.16 0.21 0.12 0.39 0.32 53 55 73.2 76 3 3.8
XIMP TIMP DWF CN* (AMC II) IA SLPP LGP MNP SCP	Unit min - - - m3/s - - % m - % m - - % hr	Description Time Step Increment Watershed Area Directly Connected Impervious Area Total Impervious Area Fraction Dry Weather Flow (Base Flow) SCS Modified Curve Number (CN*) SCS Modified Curve Number (CN*) Initial Abstraction Average Slope of Pervious Area Overland Flow Length for Pervious Areas Manning's Roughness Coefficient for Pervious Areas Storage Coefficient for Linear Reservoir for the Pervious Area Impervious Area Depression Storage	12.31 0.26 0.44	37.39 0.62 0.71 74.0	0.53	14.9 0.85 0.85 64.1 80.5	27 0.9 0.9 62.5	27.61 0.9 0.9 62.0 81.8 3	12.56 0.88 0.89 64.0 83.2 3	26.2 3 0.64 0 0.64 0 90.3 3 3.1 2 2	0.42 18.7 0.21 0.56 0.39 0.59 66.0 72.5	23.1 0.9 0.9 58.5 76.2 3	36.88 0.77 0.81 59.5 79.7 3	9.18 10.79 0.26 0.5' 0.26 0.56' 51.0 55.0 70.7 73.3	5.81 0.9 0.9 60.0 76.8 3	2F 152H 13.21 1 0.9 0.9 0 71.0 86 2 40 0.25 0 0 1 2	1521 6.47 12.82 0.9 0.9 0.9 0.9 66.0 65.0	16.7 0.68 0.71 71.9 86 5	20.34 0.53 0.56 72.5	1.78 0.99 0.99 72.5 86.5 5	4.53 0.77 0.79 72.5 86.5 5	38.42 1 0.21 0.39 59.5 79.7 3.1 2	18.88 0.32 0.6 43.3 63.5 5 1.2	3.94 18.3 0.18 0.2 0.33 0.5	5 18.17 2 0.15 8 0.41 0 55.0 6 76 3 3.1 2 2 2	21 0.21 0.37 70.0 86.9	23.12 0.17 0.3 77 90.8 3 0.8	44.27 0.27 0.44 55 76 3	5 12.02 15.16 0.21 0.12 0.39 0.32 53 55

SCP	hr	Storage Coefficient for Linear Reservoir for the Pervious Area															0						
DPSI	mm/hr	r Impervious Area Depression Storage															1						
SLPI	%	Average Slope of Impervious Area	0.3	2	1.1	0.3	2	2	2	2	2 2.3	2	2	2	2	2	2	2	2 1.6	2.5	1.1	1	2
LGI	-	A=1.5*L^2	286.5	499.3	281.3	315.2	424.3	429	289.4	468.2	450.2 941**	198	495.8	247.4	268.2	196.8	217.7	331.4	306.1 1114** 90	03**	108.9	173.8	506.1
MNI	-	Manning's Roughness Coefficient for Impervious Areas															0.01						
SCI	hr	Storage Coefficient for Linear Reservoir for the Impervious Area															0						
Rain	mm/hi	r Optional Rainfall Intensities															0 - Witho	ut Rain					

APPENDIX D-4 Regional Official Plan Amendment 128 Future Condition Model Input Parameters

ROPA 128 Condition NASHYD Model Input

Subcatchment	Unit	Description	105	108	112	117	129	134	140	143	151	152B	152E	153D	153E
DT	min	Time Step Increment							5						
Area	ha	Watershed Area	23.60	46.27	37.26	51.06	54.07	63.52	9.86	13.93	17.24	7.00	27.67	4.60	2.57
DWF	m3/s	Dry Weather Flow (Base Flow)		-	-		-		0			-	-		
CN* (AMC II)	-	SCS Modified Curve Number (CN*)	75.6	74	76.7	75.6	76.7	77.7	64.1	72.5	68.8	62.5	67.2	76.13	76.13
CN* (AMC III)		SCS Modified Curve Number (CN*)	88.1	87.5	88.7	88.1	88.7	89.2	81.1	86.3	84	79.5	83.2	88.5	88.5
IA	mm	Initial Abstraction	4.4	4.6	4.8	4.6	4.7	4.6	5	5	4.7	4.5	4.9	5	5
N	-	Number of Linear Reservoir							3						
TP	hr	Unit Hydrograph Time to Peaks	3.22	5.31	2.35	0.52	1.84	3.86	1.27	0.68	2.38	2.18	4.86	0.11	0.16
Rain	mm/h	Optional Rainfall Intensities		-					0 - Withou	t Rain		-	-		

Subcatchment	Unit	Description	157	161	162	164	170	171	176	177	178	178B	179	180
DT	min	Time Step Increment							5					
Area	ha	Watershed Area	19.55	10.09	8.46	5.14	51.64	360.73	56.53	67.03	35.31	18.37	94.63	125.58
DWF	m3/s	Dry Weather Flow (Base Flow)							0					
CN* (AMC II)	-	SCS Modified Curve Number (CN*)	51.5	50.9	52.5	50.9	80.9	65.1	68.3	59.9	57.2	54	52.5	59.9
CN* (AMC III)		SCS Modified Curve Number (CN*)	71.1	70.2	71.9	70.2	90.8	81.8	83.8	77.5	76	73.6	71.9	77.5
IA	mm	Initial Abstraction	4.5	5	4.5	5	3.7	3.9	3.5	3.8	3.3	4.8	4.6	4.4
Ν	-	Number of Linear Reservoir							3					
TP	hr	Unit Hydrograph Time to Peaks	6.1	0.55	0.96	1.03	3.41	3.31	3.29	5.46	2.35	3.45	4.73	3.72
Rain	mm/h	Optional Rainfall Intensities						0 - W	/ithout Rain					

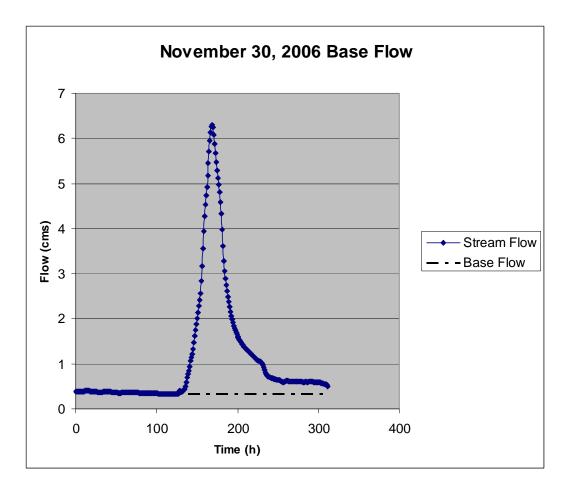
ROPA 128 Condition STANDHYD Model Inpu

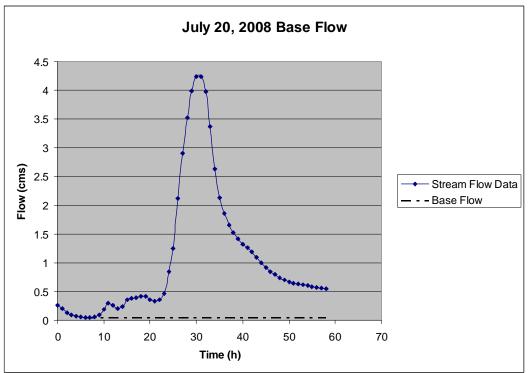
Unit Description	101	102	103	104	106	107	109	110	111 112A		113 11	14 115	116 1	17A	118	119	120	121	22 12	3 124	125 12	26A 126	6B 126C	127 12	27A	128 12	29A	130	132	133	135 1	136 137
DT min Time Step Increment																	5															
Area ha Watershed Area	30.52	22.4	26.2	13.85	9.4	22.7	22	32.7	8.5	5.92	55 13.	.4 16.2	6.66	9.76	29.37	4.38	23.88	26.77	4.4 7.7	6 7.3	19.17	5.5	10.3 2	6 69.73	8.01	11.26	53.7	15.9	4.31	13.26	12.31 37.	.39 11.87
XIMP - Directly Connected Impervious Area	0.27	0.27		0.23		0.21	0.18	0.27	0.10	0.10	0.34 0.2	0.21	0.27	0.43	0.23	0.54	0.25		.38 0.2	4 0.63	0.54	0.26	0.44 0.2		0.9	0.9	0.84	0.63	0.82			.62 0.53
TIMP - Total Impervious Area Fraction	0.27	0.5	0.45	0.45	0.45	0.39	0.34	0.48	0.35	0.35	0.63 0.3	0.48	0.47	0.56	0.41	0.55	0.45	0.58	.47 0.3	4 0.73	0.65	0.47	0.56 0.4	9 0.81	0.9	0.9	0.84	0.73	0.82	0.88	0.44 0.	.71 0.61
DWF m3/s Dry Weather Flow (Base Flow)																	0															
CN* (AMC II) - SCS Modified Curve Number (CN*)	76.0	77	77	77	77	77	74.0	74	64.0	76.0	77 76.	.0 76.0	75	76.0	75	75.0	77	80.0	73 6	5 64.5	64.5	54.0	59 5	4 58.5	64.0	73.5	76.0	76.0	78.0	76.0	77.0 74	4.0 68.7
CN* (AMC III) - SCS Modified Curve Number (CN*)	90.3	89.2	89.2	89.2	89.2	89.2	87.5	87.5	81.2	90.3	89.2 90.	.3 90.3	88.4	88.5	88.9	88.3	89.2	90.9	7.3 8	2 83.2	83.2	73.8	77.8 73	8 79	83.2	79.7	88.8	88.5	90.1	92.9	89 88	8.1 84
IA - Initial Abstraction	4.5	3.1	3	3	3	3	3.5	3	3.5	3	3	3 3	3	3	3	3	3	3.2	3	3 3	3	3	3	3 3	3	3	3.1	3	3	3	5	3 3
SLPP % Average Slope of Pervious Area																	2															
LGP m Overland Flow Length for Pervious Areas																	40															
MNP - Manning's Roughness Coefficient for Pervious A	Areas																0.25															
SCP hr Storage Coefficient for Linear Reservoir for the F	Pervious Area																0															
DPSI mm/hr Impervious Area Depression Storage																	1															
SLPI % Average Slope of Impervious Area	0.1	0.5	0.4	0.4	0.5	0.8	2	2	0.5	1.3	0.8	2 0.8	0.5	2	1	1	2	2	0.5 0.	5 2	2	2	2	2 2	2	2	2	2	2	2	0.3	2 1.1
LGI - A=1.5*L^2	451.1	360.6	440.2	303.9	245.6	368.9	421.3	483.4	264.6 1	98.7 6	22.3 30	364.1	210.7	255.1	442.5	172.4	400.6	296.9 54	3.6 233.	4 240.1	352.6	191.5	262 131	7 681.8	231.1	274	605.6	325.6	169.5	297.3	286.5 499	9.3 281.3
MNI - Manning's Roughness Coefficient for Impervious	is Areas																0.013												•	•	•	
SCI hr Storage Coefficient for Linear Reservoir for the I	Impervious Area																0															
Rain mm/hr Optional Rainfall Intensitie:																0	- Without I	Rain														
Unit Description	138	139	139A	141	142	145 14	15A 151A	A	152 152A	152C	152D	152F	152H 1	521	153 15	3A 153E	3 1530	С	56 156A	159	160 16	60A	163 16	5 166	167	172	173	174	175 178	8A 1	81 182	183
DT min Time Step Increment	138	139	139A	141	142	145 14	15A 151 <i>A</i>	Ą	152 152A	152C	152D	152F	152H 1	521	153 15	3A 153E	3 1530	C	56 156A	159	160 16	60A	163 16	5 166	167	172	173	174	175 178	8A 1	81 182	5
DT min Time Step Increment Area ha Watershed Area	138	139	139A 27.61	141	142 26.2	145 14 30.42	15A 151A	A 23.1	152 152A 36.88	152C 9.18 1	152D 0.79 5.8	152F	152H 1 16.47	521	153 15	3A 153E 20.34	3 1530 1.78	C 4.53 38	56 156A 42 18.8	159 8 3.94	160 16 18.35	60A 18.17	163 16 21 23.1	5 166 2 44.27	12.02	172 21.41	173 50.29	174 336.31	175 178 244.69		81 182 8.67 281.3	5
DT min Time Step Increment		27	27.61	141 12.56 0.88	26.2	145 14 30.42 0.21	15A 151A 18.7 0.56	A 23.1 0.9	36.88	9.18 1	152D 0.79 5.8 0.51 0.	152F 31 13.21 .9 0.9		52I 12.82 0.9	153 15 16.7 0.68	3A 153E 20.34 0.53	1.78	4.53 38	56 156A 42 18.8 21 0.3	159 8 3.94 2 0.18	160 16 18.35 0.22	50A 18.17 0.15	163 16 21 23.1 0.21 0.1	2 44.27	167 12.02 0.21	172 21.41 0.42	173 50.29 0.74			15.16 11		5 86 176.21
DT min Time Step Increment Area ha Watershed Area	14.9	27	27.61	12.56	26.2	30.42	18.7	23.1	36.88 0.77	9.18 1	0.79 5.8	152F 31 13.21 .9 0.9 .9 0.9	16.47	52I 12.82 0.9 0.9	16.7	20.34	1.78	4.53 38	.42 18.8	8 3.94	18.35	18.17	21 23.1	2 44.27	12.02	172 21.41 0.42 0.52		336.31	244.69	15.16 11	8.67 281.3	5 86 176.21
DT min Time Step Increment Area ha Watershed Area XIMP - Directly Connected Impervious Area TIMP - Total Impervious Area Fraction DWF m3/s Dry Weather Flow (Base Flow)	14.9	27	27.61	12.56	26.2	30.42	18.7	23.1	36.88 0.77	9.18 1 0.26	0.79 5.8	152F 31 13.21 .9 0.9 .9 0.9	16.47	521 12.82 0.9 0.9	16.7	20.34	1.78	4.53 38	.42 18.8	8 3.94	18.35	18.17	21 23.1	2 44.27	12.02	172 21.41 0.42 0.52		336.31	244.69	15.16 11	8.67 281.3	5 86 176.21
DT min Time Step Increment Area ha Watershed Area XIMP - Directly Connected Impervious Area TIMP - Total Impervious Area Fraction	14.9	27 0.9 0.9	27.61 0.9 0.9	12.56	26.2 0.64 0.64	30.42	18.7	23.1	36.88 0.77 0.81	9.18 1 0.26 0.26	0.79 5.8	31 13.21 .9 0.9 .9 0.9	16.47	521 12.82 0.9 0.9 65.0	16.7	20.34 0.53 0.56	1.78	4.53 38 0.77 (0.79 (.42 18.8	8 3.94 2 0.18 6 0.33	18.35	18.17	21 23.1	2 44.27	12.02	172 21.41 0.42 0.52 69		336.31	244.69	15.16 11	8.67 281.3	5 86 176.21
DT min Time Step Increment Area ha Watershed Area XIMP - Directly Connected Impervious Area TIMP - Total Impervious Area Fraction DWF m3/s Dry Weather Flow (Base Flow)	14.9 0.85 0.85	27 0.9 0.9	27.61 0.9 0.9	12.56 0.88 0.89	26.2 0.64 0.64	30.42 0.21 0.39	18.7	23.1 0.9 0.9	36.88 0.77 0.81	9.18 1 0.26 0.26	0.79 5.8 0.51 0. 0.56 0.	31 13.21 .9 0.9 .9 0.9	16.47 0.9 0.9	12.82 0.9 0.9	16.7	20.34 0.53 0.56	1.78 0.99 0.99 0	4.53 38 0.77 (0.79 (42 18.8 21 0.3 39 0.	8 3.94 2 0.18 6 0.33	18.35 0.22 0.58	18.17 0.15 0.41	21 23.1	2 44.27 7 0.27 3 0.44 7 55	12.02	172 21.41 0.42 0.52 69 84.6		336.31	244.69	15.16 11	8.67 281.3	5 86 176.21
DT min Time Step Increment Area ha Watershed Area XIMP - Directly Connected Impervious Area TIMP - Total Impervious Area Fraction DWF m3/s Dry Weather Flow (Base Flow) CN* (AMC II) - SCS Modified Curve Number (CN*)	14.9 0.85 0.85 64.1	27 0.9 0.9 62.5 81.8	27.61 0.9 0.9	12.56 0.88 0.89	26.2 0.64 0.64	30.42 0.21 0.39	18.7	23.1 0.9 0.9	36.88 0.77 0.81 59.5 79.7	9.18 1 0.26 0.26	0.79 5.8 0.51 0. 0.56 0.	31 13.21 .9 0.9 .9 0.9	16.47 0.9 0.9	12.82 0.9 0.9	16.7	20.34 0.53 0.56	1.78 0.99 0.99 0	4.53 38 0.77 (0.79 (72.5 5 86.5 5	42 18.8 21 0.3 39 0.	8 3.94 2 0.18 6 0.33	18.35 0.22 0.58	18.17 0.15 0.41	21 23.1 0.21 0.1 0.37 0 70.0 7	2 44.27 7 0.27 3 0.44 7 55	12.02	172 21.41 0.42 0.52 69 84.6 3.4	0.74 0.78 69	336.31	244.69	15.16 11	8.67 281.3	5 86 176.21
DT min Time Step Increment Area ha Watershed Area XIMP - Directly Connected Impervious Area TIMP - Total Impervious Area Fraction DWF m3/s Dry Weather Flow (Base Flow) CN* (AMC II) - SCS Modified Curve Number (CN*) CN* (AMC III) - SCS Modified Curve Number (CN*) IA - Initial Abstraction SLPP % Average Slope of Pervious Area	14.9 0.85 0.85 64.1 80.5	27 0.9 0.9 62.5 81.8	27.61 0.9 0.9	12.56 0.88 0.89	26.2 0.64 0.64 76.0 90.3	30.42 0.21 0.39	18.7	23.1 0.9 0.9	36.88 0.77 0.81 59.5 79.7	9.18 1 0.26 0.26 51.0 70.7	0.79 5.8 0.51 0. 0.56 0.	31 13.21 .9 0.9 .9 0.9	16.47 0.9 0.9	12.82 0.9 0.9	16.7	20.34 0.53 0.56	1.78 0.99 0.99 0	4.53 38 0.77 (0.79 (72.5 5 86.5 5	42 18.8 21 0.3 39 0. 9.5 43. 9.7 63.	8 3.94 2 0.18 6 0.33	18.35 0.22 0.58	18.17 0.15 0.41	21 23.1 0.21 0.1 0.37 0 70.0 7	2 44.27 7 0.27 3 0.44 7 55	12.02	0.52 69 84.6	0.74 0.78 69 84.7	336.31	244.69	15.16 11	8.67 281.3	5 86 176.21
DT min Time Step Increment Area ha Watershed Area XIMP - Directly Connected Impervious Area TIMP - Total Impervious Area Fraction DWF m3/s Dry Weather Flow (Base Flow) CN* (AMC II) - SCS Modified Curve Number (CN*) CN* (AMC III) - SCS Modified Curve Number (CN*) IA - Initial Abstraction SLPP % Average Slope of Pervious Area	14.9 0.85 0.85 64.1 80.5	27 0.9 0.9 62.5 81.8	27.61 0.9 0.9	12.56 0.88 0.89	26.2 0.64 0.64 76.0 90.3	30.42 0.21 0.39	18.7	23.1 0.9 0.9	36.88 0.77 0.81 59.5 79.7	9.18 1 0.26 0.26 51.0 70.7	0.79 5.8 0.51 0. 0.56 0.	31 13.21 .9 0.9 .9 0.9	16.47 0.9 0.9	12.82 0.9 0.9	16.7	20.34 0.53 0.56	1.78 0.99 0.99 0	4.53 38 0.77 (0.79 (72.5 5 86.5 5	42 18.8 21 0.3 39 0. 9.5 43. 9.7 63.	8 3.94 2 0.18 6 0.33	18.35 0.22 0.58	18.17 0.15 0.41	21 23.1 0.21 0.1 0.37 0 70.0 7	2 44.27 7 0.27 3 0.44 7 55	12.02	0.52 69 84.6	0.74 0.78 69 84.7	336.31	244.69	15.16 11	8.67 281.3	5 86 176.21
DT min Time Step Increment Area ha Watershed Area XIMP - Directly Connected Impervious Area TIMP - Total Impervious Area Fraction DWF m3/s Dry Weather Flow (Base Flow) CN* (AMC II) - SCS Modified Curve Number (CN*) CN* (AMC III) - SCS Modified Curve Number (CN*) IA - Initial Abstraction	14.9 0.85 0.85 64.1 80.5 4.8	27 0.9 0.9 62.5 81.8	27.61 0.9 0.9	12.56 0.88 0.89	26.2 0.64 0.64 76.0 90.3	30.42 0.21 0.39	18.7	23.1 0.9 0.9	36.88 0.77 0.81 59.5 79.7	9.18 1 0.26 0.26 51.0 70.7	0.79 5.8 0.51 0. 0.56 0.	31 13.21 .9 0.9 .9 0.9	16.47 0.9 0.9	12.82 0.9 0.9	16.7	20.34 0.53 0.56	1.78 0.99 0.99 0 72.5 86.5 5 2	4.53 38 0.77 (0.79 (72.5 5 86.5 5	42 18.8 21 0.3 39 0. 9.5 43. 9.7 63.	8 3.94 2 0.18 6 0.33	18.35 0.22 0.58	18.17 0.15 0.41	21 23.1 0.21 0.1 0.37 0 70.0 7	2 44.27 7 0.27 3 0.44 7 55	12.02	0.52 69 84.6	0.74 0.78 69 84.7	336.31	244.69	15.16 11	8.67 281.3	5 86 176.21
DT min Time Step Increment Area ha Watershed Area XIMP - Directly Connected Impervious Area TIMP - Directly Connected Impervious Area TIMP - Total Impervious Area Fraction DWF m3/s Dry Weather Flow (Base Flow) CN* (AMC II) SCS Modified Curve Number (CN*) CA* (AMC III) SCS Modified Curve Number (CN*) IA - Initial Abstraction SLPP % Average Stope of Pervious Area LGP m Overland Flow Length for Pervious Areas	14.9 0.85 0.85 64.1 80.5 4.8 Areas	27 0.9 0.9 62.5 81.8	27.61 0.9 0.9	12.56 0.88 0.89	26.2 0.64 0.64 76.0 90.3	30.42 0.21 0.39	18.7	23.1 0.9 0.9	36.88 0.77 0.81 59.5 79.7	9.18 1 0.26 0.26 51.0 70.7	0.79 5.8 0.51 0. 0.56 0.	31 13.21 .9 0.9 .9 0.9	16.47 0.9 0.9	12.82 0.9 0.9	16.7	20.34 0.53 0.56	1.78 0.99 0.99 0 72.5 86.5 5 2 40	4.53 38 0.77 (0.79 (72.5 5 86.5 5	42 18.8 21 0.3 39 0. 9.5 43. 9.7 63.	8 3.94 2 0.18 6 0.33	18.35 0.22 0.58	18.17 0.15 0.41	21 23.1 0.21 0.1 0.37 0 70.0 7	2 44.27 7 0.27 3 0.44 7 55	12.02	0.52 69 84.6	0.74 0.78 69 84.7	336.31	244.69	15.16 11	8.67 281.3	5 86 176.21
DT min Time Step Increment Area ha Watershed Area XIMP - Directly Connected Impervious Area TIMP - Directly Connected Impervious Area TIMP - Total Impervious Area Fraction DWF m3/s Dy Weather Flow (Base Flow) CN* (AMC III) SCS Modified Curve Number (CN*) CN Stop Modified Curve Number (CN*) IA - Initial Abstraction SLPP % Average Stope of Pervious Area LGP mOverland Flow Length for Pervious Area SCP Manning's Roughness Coefficient for Freevious A SCP hrd Manning's Roughness Coefficient for Linear Reservoir for the Flow	14.9 0.85 0.85 64.1 80.5 4.8 Areas	27 0.9 0.9 62.5 81.8	27.61 0.9 0.9	12.56 0.88 0.89	26.2 0.64 0.64 76.0 90.3	30.42 0.21 0.39	18.7	23.1 0.9 0.9	36.88 0.77 0.81 59.5 79.7	9.18 1 0.26 0.26 51.0 70.7	0.79 5.8 0.51 0. 0.56 0.	31 13.21 .9 0.9 .9 0.9	16.47 0.9 0.9	12.82 0.9 0.9	16.7	20.34 0.53 0.56	1.78 0.99 0.99 0 72.5 86.5 5 2 40	4.53 38 0.77 (0.79 (72.5 5 86.5 5	42 18.8 21 0.3 39 0. 9.5 43. 9.7 63.	8 3.94 2 0.18 6 0.33	18.35 0.22 0.58	18.17 0.15 0.41	21 23.1 0.21 0.1 0.37 0 70.0 7	2 44.27 7 0.27 3 0.44 7 55	12.02	0.52 69 84.6	0.74 0.78 69 84.7	336.31	244.69	15.16 11	8.67 281.3	5 86 176.21
DT min Time Step Increment Area Matershed Area XIMP - Directly Connected Impervious Area TIMP - Directly Connected Impervious Area TIMP - Total Impervious Area Fraction DWF m3/s Dry Weather Flow (Base Flow) CN* (AMC II) - SCS Modified Curve Number (CN*) IA - Initial Abstraction SLPP % Average Stope of Pervious Area LGP moning's Roughness Coefficient for Pervious Areas MNP - Manning's Roughness Coefficient for Pervious Areas SCP hr Storage Coefficient for Linear Reservoir for the 1 DFS1 mm/hr Impervious Area Storage	14.9 0.85 0.85 64.1 80.5 4.8 Areas	27 0.9 0.9 62.5 81.8	27.61 0.9 0.9	12.56 0.88 0.89	26.2 0.64 0.64 76.0 90.3	30.42 0.21 0.39	18.7	23.1 0.9 0.9	36.88 0.77 0.81 59.5 79.7	9.18 1 0.26 0.26 51.0 70.7	0.79 5.8 0.51 0. 0.56 0.	31 13.21 .9 0.9 .9 0.9	16.47 0.9 0.9	12.82 0.9 0.9	16.7	20.34 0.53 0.56	1.78 0.99 0.99 0 72.5 86.5 5 2 40	4.53 38 0.77 (0.79 (72.5 5 86.5 5	42 18.8 21 0.3 39 0. 9.5 43. 9.7 63.	8 3.94 2 0.18 6 0.33	18.35 0.22 0.58	18.17 0.15 0.41	21 23.1 0.21 0.1 0.37 0 70.0 7	2 44.27 7 0.27 3 0.44 7 55	12.02	0.52 69 84.6	0.74 0.78 69 84.7	336.31	244.69	15.16 11	8.67 281.3	5 86 176.21
DT min Time Step Increment Area ha Watershed Area XIMP - Directly Connected Impervious Area TIMP - Total Impervious Area Fraction DWF m3/s Dry Weather Flow (Base Flow) CN* (AMC II) - SCS Modified Curve Number (CN*) CN* (AMC III) - SCS Modified Curve Number (CN*) IA - Initial Abstraction SLPP % Average Slope of Pervious Area LGP m Overland Flow Length for Pervious Areas SCP hr Storage Coefficient for Linear Reservoir for the f DPSI mm/hr/ Impervious Area Depression Storage SLPI % Arerage Slope of Pervisions Area	Areas Pervious Area	27 0.9 0.9 62.5 81.8 3	27.61 0.9 0.9 62.0 81.8 3	12.56 0.88 0.89	26.2 0.64 0.64 76.0 90.3 3.1	30.42 0.21 0.39	18.7 0.56 0.59 72.5 86.5 5	23.1 0.9 0.9 58.5 76.2 3	36.88 0.77 0.81 59.5 79.7 3	9.18 1 0.26 0.26 51.0 70.7 4.4	0.79 5.8 0.51 0. 0.56 0.	31 13.21 .9 0.9 .9 0.9 .0 71.0 .8 86 .3 3 2 2	16.47 0.9 0.9 66.0 84.5 3	12.82 0.9 0.9 65.0 83.8 3	16.7 0.68 0.71 71.9 86 5	20.34 0.53 0.56 72.5 86.5 5 2.5	1.78 0.99 0.99 0.25 86.5 5 2 40 0.25 0 1 1.1	4.53 34 0.77 (0.79 (72.5 8 86.5 5 5	42 18.8 21 0.3 39 0. 9.5 43. 9.7 63.	8 3.94 2 0.18 6 0.33 3 55 5 76 5 3 2 2	18.35 0.22 0.58 55.0 76 3	18.17 0.15 0.41 55.0 76 3.1	21 23.1 0.21 0.1 0.37 0 70.0 7 86.9 90 3.1 0.8 0	2 44.27 7 0.27 3 0.44 7 55 8 76 3 3 3 8 2.2	12.02	0.52 69 84.6	0.74 0.78 69 84.7 3.1	336.31 0.36 0.44 63 81.1 3.6	244.69 0.57 0.61 63 80.6 3.5	15.16 111 0.12 0.32 55 76 3.8	8.67 281.3	5 176.21 1.27 0.5 1.37 0.6 63 63 63 81 81.8 3.6 3.2 2 2 2
DT min Time Step Increment Area ha Watershed Area XIMP - Directly Connected Impervious Area TIMP - Directly Connected Impervious Area TIMP - Total Impervious Area Fraction DWF m3/s Dry Weather Flow (Base Flow) CN* (AMC III) SCS Modified Curve Number (CN*) IA - Initial Abstraction SLPP % Average Stope of Pervious Area LGP Manning's Roughness Coefficient for Pervious Areas SCP hr Storage Coefficient for Linear Reservoir for the f DPS1 mm/hr Impervious Area Depression Storage SLP1 % Average Stope of Impervious Area LGI - Initial - Tota	Areas 0.3 315.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	27 0.9 0.9 62.5 81.8 3	27.61 0.9 0.9 62.0 81.8 3	12.56 0.88 0.89 64.0 83.2 3	26.2 0.64 0.64 76.0 90.3 3.1	30.42 0.21 0.39 66.0 84.5 3	18.7 0.56 0.59 72.5 86.5 5	23.1 0.9 0.9 58.5 76.2 3	36.88 0.77 0.81 59.5 79.7 3	9.18 1 0.26 0.26 51.0 70.7 4.4	0.79 5.8 0.51 0. 0.56 0. 55.0 60. 73.3 76. 3	31 13.21 .9 0.9 .9 0.9 .0 71.0 .8 86 .3 3 .2 2	16.47 0.9 0.9 66.0 84.5 3	12.82 0.9 0.9 65.0 83.8 3	16.7 0.68 0.71 71.9 86 5	20.34 0.53 0.56 72.5 86.5 5 2.5	1.78 0.99 0.99 0.25 86.5 5 2 40 0.25 0 1 1.1	4.53 34 0.77 (0.79 (72.5 8 86.5 5 5	42 18.8 21 0.3 39 0. 9.5 43. 9.7 63. 3.1 2 1.	8 3.94 2 0.18 6 0.33 3 55 5 76 5 3	18.35 0.22 0.58 55.0 76 3	18.17 0.15 0.41 55.0 76 3.1	21 23.1 0.21 0.1 0.37 0 70.0 7	2 44.27 7 0.27 3 0.44 7 55 8 76 3 3 3 8 2.2	12.02 0.21 0.39 53 73.2 3	0.52 69 84.6 3.4	0.74 0.78 69 84.7 3.1	336.31 0.36 0.44 63 81.1 3.6	244.69 0.57 0.61 63 80.6 3.5	15.16 111 0.12 0.32 55 76 3.8	8.67 281.3 0.36 0. 0.36 0. 64 81.3 4 :	5 176.21 1.27 0.5 1.37 0.6 63 63 63 81 81.8 3.6 3.2 2 2 2
DT min Time Step Increment Area ha Watershed Area XIMP - Directly Connected Impervious Area TIMP - Total Impervious Area Fraction DWF m3/s Dry Weather Flow (Base Flow) CN* (AMC II) - SCS Modified Curve Number (CN*) CN* (AMC III) - SCS Modified Curve Number (CN*) IA - Initial Abstraction SLPP % Average Slope of Pervious Area LGP m Overland Flow Length for Pervious Areas SCP hr Storage Coefficient for Linear Reservoir for the f DPSI mm/hr/ Impervious Area Depression Storage SLPI % Arerage Slope of Pervisions Area	Areas 0.3 0.3 0.3 0.4 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	27 0.9 0.9 62.5 81.8 3	27.61 0.9 0.9 62.0 81.8 3	12.56 0.88 0.89 64.0 83.2 3	26.2 0.64 0.64 76.0 90.3 3.1	30.42 0.21 0.39 66.0 84.5 3	18.7 0.56 0.59 72.5 86.5 5	23.1 0.9 0.9 58.5 76.2 3	36.88 0.77 0.81 59.5 79.7 3	9.18 1 0.26 0.26 51.0 70.7 4.4	0.79 5.8 0.51 0. 0.56 0. 55.0 60. 73.3 76. 3	31 13.21 .9 0.9 .9 0.9 .0 71.0 .8 86 .3 3 .2 2	16.47 0.9 0.9 66.0 84.5 3	12.82 0.9 0.9 65.0 83.8 3	16.7 0.68 0.71 71.9 86 5	20.34 0.53 0.56 72.5 86.5 5 2.5	1.78 0.99 0.99 0 72.5 86.5 5 2 40 0.25 0 1 1.1 108.9	4.53 34 0.77 (0.79 (72.5 8 86.5 5 5	42 18.8 21 0.3 39 0. 9.5 43. 9.7 63. 3.1 2 1.	8 3.94 2 0.18 6 0.33 3 55 5 76 5 3	18.35 0.22 0.58 55.0 76 3	18.17 0.15 0.41 55.0 76 3.1	21 23.1 0.21 0.1 0.37 0 70.0 7 86.9 90 3.1 0.8 0	2 44.27 7 0.27 3 0.44 7 55 8 76 3 3 3 8 2.2	12.02 0.21 0.39 53 73.2 3	0.52 69 84.6 3.4	0.74 0.78 69 84.7 3.1	336.31 0.36 0.44 63 81.1 3.6	244.69 0.57 0.61 63 80.6 3.5	15.16 111 0.12 0.32 55 76 3.8	8.67 281.3 0.36 0. 0.36 0. 64 81.3 4 :	5 176.21 1.27 0.5 1.37 0.6 63 63 63 81 81.8 3.6 3.2 2 2 2

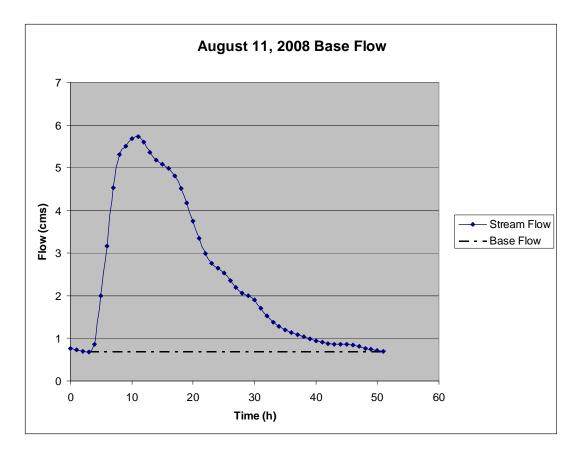
APPENDIX E Calibration Event Validation

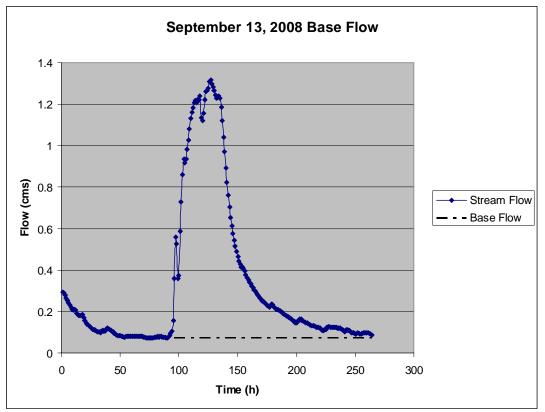
Duffins Creek				Calibration/Validation Events - Observed Flows						
	Drainage Ares	Regional Flow	17-Jul-99	29-Sep-99	13-Oct-99	11-May-00	13-Jun-00	24-Jun-00		
Sub Watershed	(km ²)	(m ³ /s)	33.0mm	60.2mm	45.0mm	61.8mm	45.4mm	41.0mm		
Reesor Creek	32.6	146.9 m ³ /s	1.4 m ³ /s	3.8 m ³ /s	3.2 m ³ /s	9.0 m³/s	7.8 m ³ /s	6.5 m³/s		
Duffins Creek	255	862.5 m ³ /s	10.2 m ³ /s	7.6 m ³ /s	10.9 m³/s	68.2 m ³ /s	68.9 m ³ /s	54.7 m ³ /s		

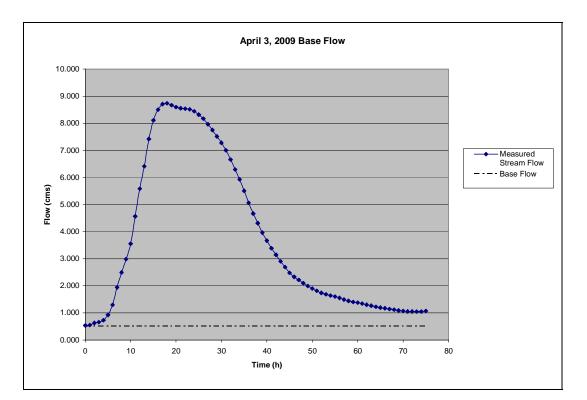
Petticoat Creek		Calibration/Validation Events - Observed Flows (m ³ /s)*								
Drainage Areas (km ²)	Regional Flow	15-May-03	23-May-03	13-Jun-03	15-Jul-03	24-May-04	4-Aug-04	29-Aug-04	9-Sep-04	
	(m ³ /s)	53.3mm	37.9mm	18.4mm	15.1mm	22.2mm	13.3mm	23.7mm	33.1mm	
157.2	260.02	23.3	7.5	2.8	4.6	2.9	5.0	14.2	3.6	

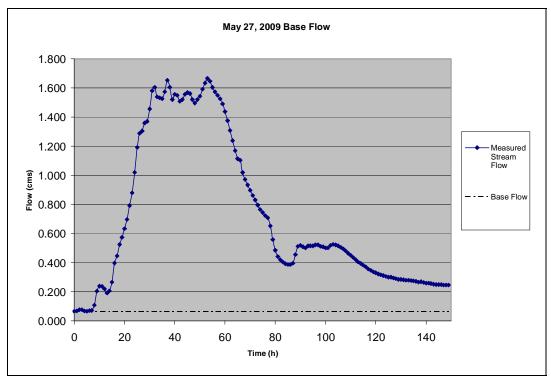

*note - Observed Flows read off of hydrograph (assume (+/- 5%)

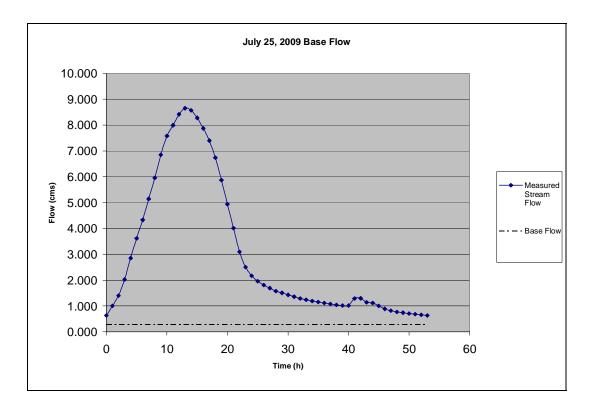

Highland Creek			Calibration/Validation Events - Observed Flows (m3/s)*							
Subwatershed	Drainage Areas	Regional Flow	13-Jul-95	28-Jul-95	5-Oct-95	10-Nov-95	7-Sep-96	29-Sep-99	24-Jun-00	
	(km²)	(m ³ /s)*	14.3mm	15.1mm	54.4mm	54.4mm	73mm	40.9mm	34.8mm	
Bendale Branch (2)	25.34	257.4						18.1	17.2	
West Branch (9012)	39.12	400.2							21.48	
WSC Station (02HC013)	93.79	863.3	29.8	46.89	122.7	86.71	113.31			

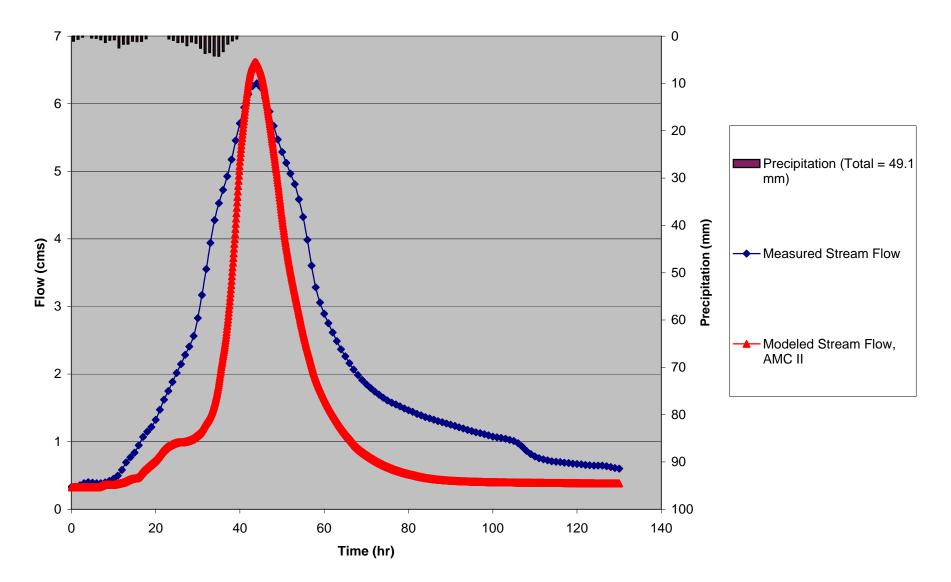

*Drainage area for Regional Flow calc is 88.26 at WSC Station

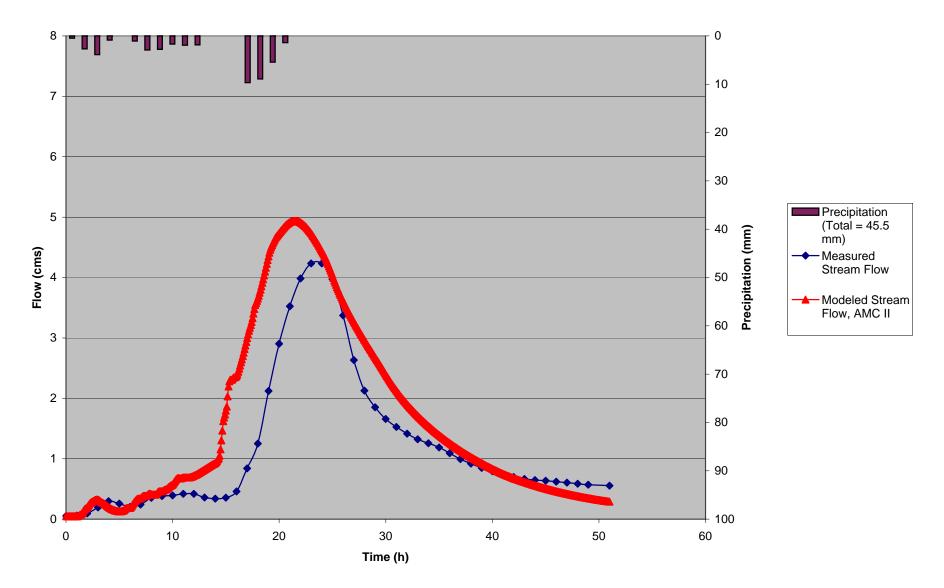

	Calibration/Validation Events - Observed			
Don River	Flows (m3/s)*			
Subwatershed	Drainage Areas	Regional Flow	12-May-00	26-Aug-86
Subwatersned	(km²)	(m ³ /s)*	66mm	68mm
Todmorden Gauge (48.3)	334	1728.34	208.99	207
Yonge-York Mills (11.2)	87.13	561.1	52.99	55.2
Lower Don (East Don) (41.3)	131.59	878.59	-	153


APPENDIX F Base Flow Graphs for Calibration and Validation Storms

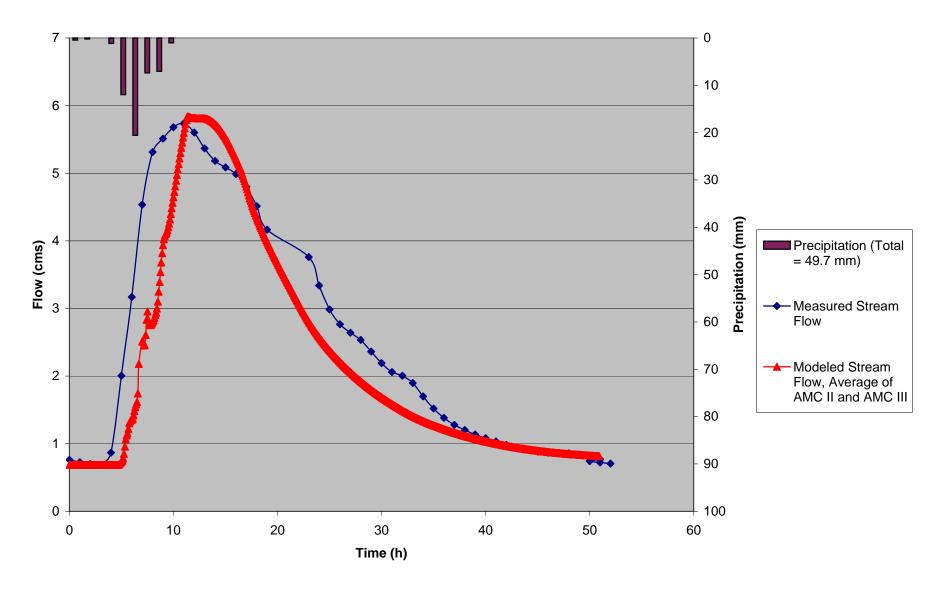


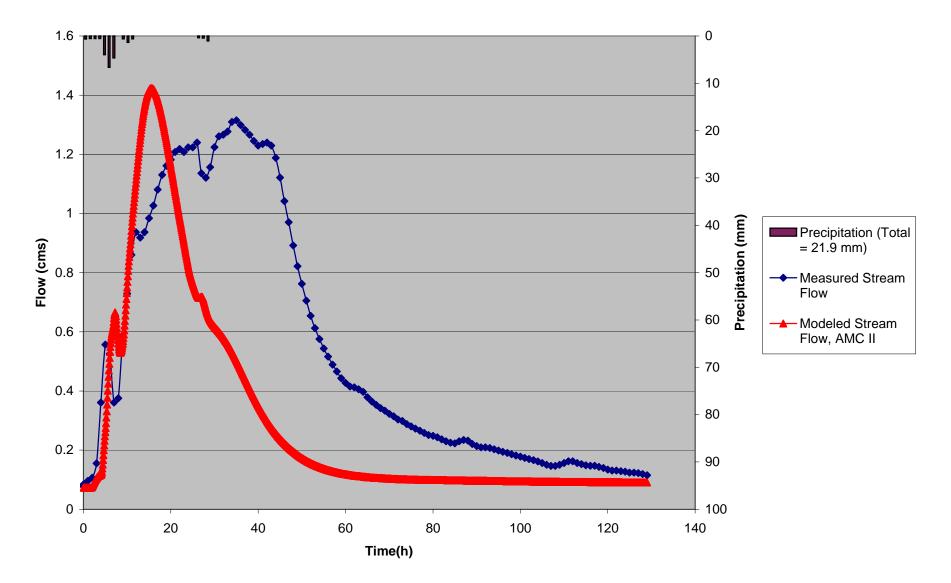




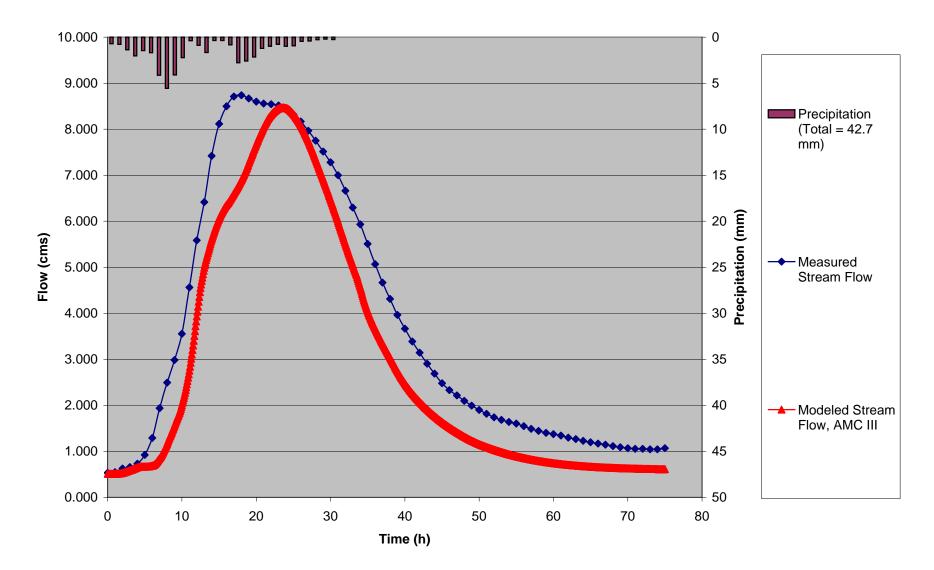


APPENDIX G Calibration and Validation Results APPENDIX G-1 Graphs of Results of Calibration Storms

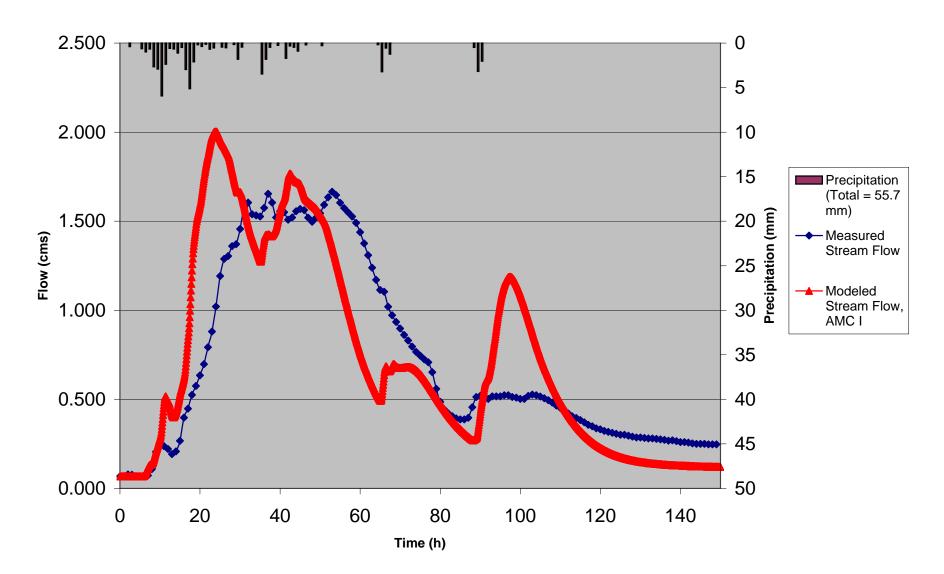

November 30, 2006 Storm


July 20, 2008 Storm

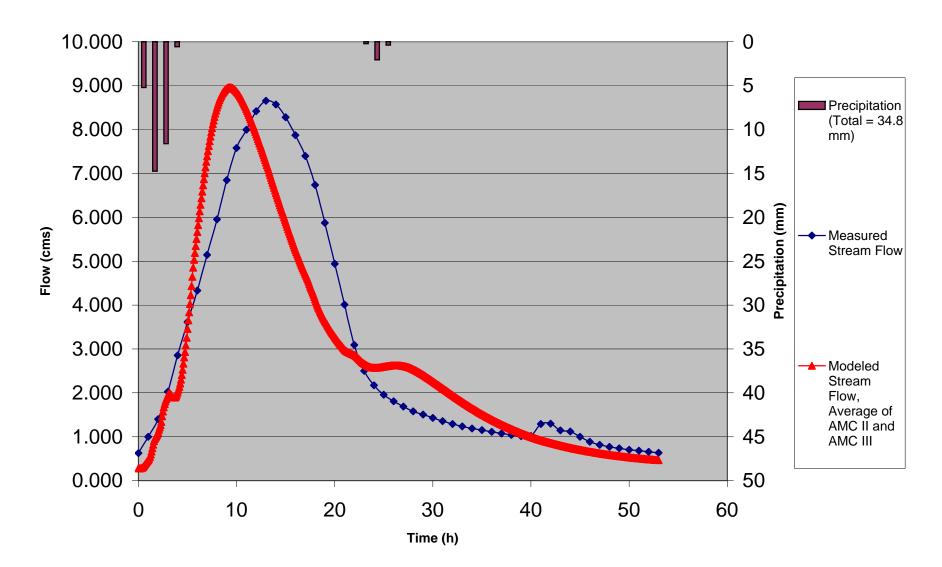
August 11, 2008 Storm



September 13, 2008 Storm



APPENDIX G-2 Graphs of Results of Validation Storms


April 3, 2009 Storm

May 27, 2009 Storm

July 25, 2009 Storm

APPENDIX G-3 TRCA Memo – Hydrology Discussion

MEMORANDUM

TO:	Geoff Masotti	DATE:	July 14, 2011	
FROM:	Nick Lorrain	CFN:		
RE:	Carruthers Creek Flood Management and Analysis – Hydrology Discussion			
CC:				

Hi Geoff,

As discussed in April, here is a synopsis of the September 13, 2008, May 27, 2009, and July 25, 2009 calibration events used for the Carruthers Creek hydrology update where the calibration process was not ideal.

Using Radar data I was able to determine the following:

September 13, 2008

- Bottom portion of the watershed was affected by the event; majority of the watershed upstream of 401 received little precipitation.
- Event was frontal in nature with a south west to north east direction.
- 1st pulse of precipitation occurs in the morning with a break in rain for approximately an hour, before steady precipitation entered the area and persisted for a majority of the day.

May 27, 2009

- Event associated with thunderstorms entering the area prior to the main front, where northern portions of the watershed being hit with precipitation at various times through out the morning until the full front moved through the area, after which and hour or so of persistent low intensity precipitation had occurred.
- Lag time of approximately 1 to 2 hours had occurred from the end of the thunderstorms until the front moved through the area.

July 25, 2009

- A similar system to the May 27, 2009 event where thunderstorms had occurred in the area prior to the main front moving through the area.
- Direction of the event was from a south to north direction with the system moving from the downstream to upstream direction.

As can be seen above due to the variation in timing and movement of the systems thorough the watershed getting representative results between simulated and observed hydrographs would be difficult. Compounding the issue is also the fact that VO2 limits the amount of gauges used in hydrologic modeling (something I'm sure you'll address in VO3).

It should be noted that although 3 events were excluded from the assessment, the amount of events used in the calibration/validation process are appropriate, and are consistent with the

July 14, 2011

number of events used in other watershed hydrology studies within TRCA jurisdictions (typically 4 to 6).

Based on the above and as previously discussed (April 2011) Authority staff has no concerns with the calibration process used for the Carruthers Creek.

Please feel free to contact me should you have any questions or concerns.

Regards,

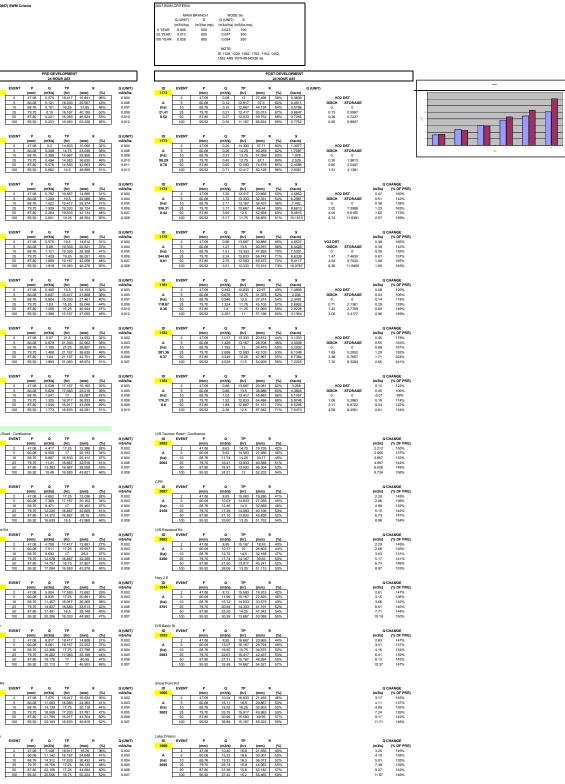
Nick Lorrain Ex. 5336 APPENDIX H Proposed Pond Results and Rating Curves

APPENDIX H-1

Approved Official Plan Proposed Pond Results and Rating Curves

Approve	d Official Plan - Existing (2007) SWIK Criteria	PHL/# 2 DIX CHTMA OLMIN DIX C 1000 0000 H 2000 H 2000 H 2000 H 2000 1 2 0000 H 2000 H 2000 H 2000 H 2000 1 2 0000 H 2000 H 2000 H 2000 H 2000 1 2 0000 H 2000 H
	PRE-DEVELOPMENT	NOT CONTENT 100 100 100 100 100 100 100 100 100 10
	21 (FORMA 45 STORMS) Difference P	10 0000 00000 00000 00000 00000 00000 0000
	DD EVENT P O P R C CMPH 1177 2 47.05 0.177 151.07 50.06 23.7 0.013 A 5 67.06 0.107 151.07 55.06 23.7 40.7 0.020 M 50 66.76 0.21 154.07 52.07 43.7 0.020 M 50 66.77 0.21 154.07 22.77 43.7 0.025 A 50 0.21 154.07 23.21 43.4 0.014 100 56.32 23.8 164.07 23.36 23.7 0.024	0 PHN 0 7 5 0 Outline 157 mini Iolia
	ID EVENT P B P R O(MIT) 112	0 PAST 0 P 5 OCMUSE 12 12 12 12 100
	ID EVENT P 0 TP R C (NIT) 1133	0 PAINT 0 PF 5 Octuate 112
	ID DENEXT P 0 TP R 0.00071 1111 (cmm) (cm3) (cm3) (cm3) m3/bhs 2 47.05 0.144 1.0547 1.539 345. 0.013 4 0.502 0.246 1.0547 1.539 345. 0.013 6 0.502 0.246 1.0547 1.539 345. 0.001 6 0.502 0.246 1.0547 1.539 345. 0.001 6 2.2 1.737 0.387 1.0167 3.468 445. 0.021 100 2.527 0.539 1.5167 3.456 4.451 0.024 100 2.527 0.559 1.5142 51.113 3.55. 0.044	0 PMST 0 P 8 0 0/04082 11 11 11 11 0 0/04082 00/04082
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
	123 (1514) (mail) (m23) (m2)	1211124.1 mml Lick N M1 Point Point <th< th=""></th<>
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	133 135 135 136
ĺ	12A (ms) (ms) (ms) (ms) (ms) m3/khs A 2 4/256 6/25 13 13:13 23% 0.011 A 2 6/256 6/26 13 13:13 23% 0.011 A 2 6/256 6/26 12 13 13:14 0.011 A 2 6/26 6/26 12 13:13 25% 0.011 A 2 6/26 6/26 12 12:33 0.021 0.011 Y 7/40 2 7/270 12:23 12:30 0.026 4/3% 0.008 50 8/26 0.27 12:33 3:562 4/% 0.003 100 6/52 0.427 12:33 3:562 4/% 0.003	UBA mml LinkN M M PD
	2 4766 0.061 14.333 17.219 37% 0.005 Mail 6.058 6.121 14.167 26.244 45% 0.007 Mail 5 6.058 6.121 14.167 26.2644 45% 0.007 Scatt 5.2 87.07 0.158 14 32.6644 0.5% 0.012 Scatt 87.26 0.228 12.812 14.47 32.6744 0.014 100 95.52 0.128 14.833 54.004 25% 0.014	Av 0 6.67 5.047 </th
NODE 9a	ID EVENT P 0 TP R C (R)(NT) 222 (023) (em) (m3)	0 0 (007) 0 0 0 0 0 0 0 0 0 0.00067 201042 (007)
Ň	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	No. Dir. P 0 P 6 Constrained A 1
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D DMM* P O P S O GAUGE SURDET
	UIC Tancton Roard - Confuscou De FENST P 0 P 8 0 2007 10/00 4 000 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0	US Taunto Naci Confanos D DNY P 0 P R OL 200 200 200 00 00 00 00 00 00 00 00 00 0
	Dim Event P G TP F G(NT) 200 201/2 <td< th=""><th>Diff P 0 P R O SMMCE 20 200 10</th></td<>	Diff P 0 P R O SMMCE 20 200 10
	US Restant Rd D 2 VeVNT P D P S C 00007 2 VeVNT P D P S C 00007 4 C 2 VeVNT P 10 VeVNT P 000 4 C 2 VeVNT P 10 VeVNT P 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	US Russient for 0 1011 F 10 10 1 101 101 101 101 101 10
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Childred P P P Column 2 0
	Description Description P P P F O ((MP)) 105 Extra mode (MAX) (My) (ma) (MAX) (MX)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	List Dame 2014 Denter P 0 79 8 0(MT) 2019 Denter 10 10 10 0(MT) 4 1 10 10 10 10 10 10 10 10 10 10 10 10 1	Liab Calmar D Tratt P 0 TP R ODMARCE 100

Арргоче	el Oficial Par-Lipidad SBN Claris	Approved Official Prin - Lipsteind (2011) SINN Criteria	DIMA CINTERIA GUNAN OLIVAN STEAR (action mail) STEAR (action control action STEAR (action control actio	
	PRE-DEVELOPMENT	POST-DEVELOPMENT 24 HOUR AES STORMS		
	D Detert P 0 10 P R 0(pN1) 1120 (mai) (m		V02.05T (m3h) (K of PRE) V02.05T 0.0 -2.3 37.6 DISCH 0.2 2.75. -0.23 275. 0.10 0.2504 -0.24 315. -0.31 375. 0.10 0.2504 -0.34 315. -0.32 325. -0.41 335. -0.41 325. -0.41 325. -0.41 325. -0.41 -0.41 325. -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 <	
	UD EVENT P Q TP R CQ (MT) 1217 (em) (rds) (rds) mb/mb 2 47.05 0.127 0.167 55.05 335. 0.013 4) 5 0.626 0.151 0.152 0.152 0.156 0.550 0.55 0.050 0.051 0.050 0.051	2 47.58 0.641 12.917 30.401 67% 0.1016 4) 5 60.50 60.55 12.33 61.76 60.76 32.93 6) 60.50 12.33 61.76 60.75 12.93 52.92 17% 63.95 6.41 5.9 67.85 0.102 12.33 54.22 17% 63.95 6.31 5.9 67.85 0.102 12.33 54.92 17% 63.95 6.31 5.9 67.85 0.102 12.33 54.92 17% 63.95 6.31 5.9 67.85 0.1126 12.30 54.66 7% 63.362 6.31 50 67.85 0.1127 1.1 72.402 7% 53.262	0 0 -0.16 32% 0.06 0.2733 -0.20 35% 0.12 0.3553 -0.21 35% 0.25 0.4372 -0.22 45%	
	ID EVENT P 0 TP R O (MM) 1122 (mm) mm)	0.82 50 57.80 0.046 12.233 72.1 50% 0.2283 100 95.52 0.063 12.25 86.93 91% 0.242	UCZ DST -0 CHANGE VOZ DST -0.04 327,47 DSC4 STORAGE -0.04 327,47 0.0 0 0.04 27,47 0.03 0.1767 -0.10 29% 0.05 0.2227 -0.10 29% 0.11 0.2827 -0.12 34%	
	1133 (mai) (mb) (mb) </td <td>1133 (mil) <th(< td=""><td>0 CHMNEE (mb) for 97 and 0 DICH 3 TORAGE -0.17 24% 0 0 -0.232 21% 0.08 0.2324 -0.32 24% 0.16 0.2525 -0.42 26% 0.34 0.2325 -0.45 29%</td><td></td></th(<></td>	1133 (mil) (mil) <th(< td=""><td>0 CHMNEE (mb) for 97 and 0 DICH 3 TORAGE -0.17 24% 0 0 -0.232 21% 0.08 0.2324 -0.32 24% 0.16 0.2525 -0.42 26% 0.34 0.2325 -0.45 29%</td><td></td></th(<>	0 CHMNEE (mb) for 97 and 0 DICH 3 TORAGE -0.17 24% 0 0 -0.232 21% 0.08 0.2324 -0.32 24% 0.16 0.2525 -0.42 26% 0.34 0.2325 -0.45 29%	
	ID EVENT P 0 TP R C) [MR] 141 2 4700 5014 4510 1520 5514 4 2 4700 5014 4510 1520 5514 6017 5520 6017 5520 6510 5510 6017 5520 6510 55		0 CLANNEE (mb) (% OF WARD 0 CO DST (%) (% OF WARD) DICH STORAGE -411 27% 0 0 0-423 27% 0 0 0-423 27% 0 05 0.258 -423 27% 0 15 0.726 -431 37% 0 33 0.8943 -435 32% 0 CLANGE	
	1129 (mn) (m33k) (bv) (mn) (m3) mixbh A 2 472.66 (cl.44 5.333 56.671 35.0 0.005 A 5 60.06 6.271 5.333 52.774 45% 0.005 y 55 60.06 6.271 5.333 52.774 45% 0.005 27 7.870 1.202 1.512.73 37.85 55% 0.013 50 87.80 0.400 1.3167 46.159 37% 0.013 50 87.80 0.400 1.3167 26.374 53% 0.011 50 87.80 0.406 1.3167 26.374 55% 0.017	D EVENT P 0 P R 5 133 - - - - - R - - R - </td <td>CLANNEE (m3) (5: 0 FW DISCH STORAGE -0.04 0 0 -0.12 55% 0.15 1210 -0.12 55% 0.15 1210 -0.12 55% 0.12 1270 -0.12 77% 0.17 15440 -0.11 75% 0 CLANNEE (m30) (5: 0 FW)</td> <td></td>	CLANNEE (m3) (5: 0 FW DISCH STORAGE -0.04 0 0 -0.12 55% 0.15 1210 -0.12 55% 0.15 1210 -0.12 55% 0.12 1270 -0.12 77% 0.17 15440 -0.11 75% 0 CLANNEE (m30) (5: 0 FW)	
	2 3 1 0.00 4 3 2 2 2 7 0.00 4 3 2 2 7 0.00 4 3 3 2 3 1 0.00 1 3 3 2 3 1 0.00 1 3 3 3 4 3 3 4 3		0 CHMORE (m3) (K O PTE) DSCH STONGE 0 SCH STONGE 0 0 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000000 0.00000000	Ìı
	Display Centre P 0 P 0 P 0 Display 1 2007	0.9 50 87.80 0.125 12.417 82.033 93% 0.62/1 100 95.92 0.155 12.333 89.944 94% 0.6742	02144062 (m3) (5 62 PT 0321 ST0502 031 127% 0321 ST0502 031 037% 032 03255 030 127% 032 03255 030 127% 032 03255 030 127% 032 03254 031 110% 032 03255 030 127% 032 03255 030 127% 032 032 032 032 032 032 032 032 032 032	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		VOIDST OID (MARCE VOIDST (M) (M) (M) (M) DISCH STORAGE -0.05 0 -0.05 0.11 1.242 0.21 1.242 0.72 1.527 0.72 1.527 0.72 1.527 0.72 1.527 0.75 1.507 0.76 0.07 0.77 1.507 0.77 0.07 0.77 0.07	
NODE 9a	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		VCI DET -0 CHACE VCI DET -0.01 5.02 DECH 150 Mag. -0.01 7.03 0 0 1.02 7.03 7.03 0 0 1.02 0.01 7.03 0.01 7.03 0 0 1.02 0.02	
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0 0 000000 0 000 000 0 000 000 0 000 00	
	ID EVENT P Q TP R Q Q DID EVENT P Q TP R Q <	(na) 10 68.76 0.0504 1/27 42/00 6.75 0.2604 10.79 25 72.70 0.001 12.333 51.04 6.6% 0.3427 0.6 50 67.80 0.114 12.333 57.211 65% 0.3427 100 95.92 0.14 12.25 63.508 65% 0.3688	0 0 0.000 104% 0.06 0.3201 0.02 121% 0.13 0.3228 0.02 127% 0.28 0.4834 0.04 133%	
	<u>30 8740 205 125 27530 275</u> 0000 100 6550 000 125 77380 275 000	A 5 00:8 007 130 1427 050 0.022 Nu 0 10 0.05 142 0.05 142 0.05 0.022 Nu 15 0.05 142 0.05 142 0.05 0.05 Nu 15 0.05 0.05 0.05 0.05 0.05 0.05 AB 00 0.05 0.05 0.05 0.05 0.05 AB 00 0.05 0.05 0.05 0.05 AB 00 0.05 0.05 0.05 0.05 AB 00 0.05 0.05 0.05 AB 00 0.05 0.05 AB 00 0.05 0.05 AB 00 0.0	VOZ DST (0,0) (0,0) (4,0) DISCH STORAGE 0.01 0.00 100% 0 0.02 123% 0.01 119% 0.07 0.339 0.01 119% 0.01 119% 0.07 0.339 0.01 119% 0.02 132% 0.15 0.4153 0.02 132% 0.02 132%	
	Construction P R Construction D0 EVENT Fib. (Not 1) Fib. (Not 1) Fib. (Not 1) D0 EVENT Fib. (Not 1) Fib. (Not 1) Fib. (Not 1) Fib. (Not 1) A 5 EVENT Fib. (Not 1) Fib. (Not 1) Fib. (Not 1) Fib. (Not 1) A 5 EVENT Fib. (Not 1)	2002 25 72.70 11.41 16.667 32.516 41% 5 87.60 13.383 16.667 32.516 43% 100 95.92 15.46 16.553 43.821 40%	C CHANGE (m3h) (% OF PRE) 0.000 107%, 0.000 107%, 0.000 107%, 0.000 107%,	
	OT FEMT P 0 P 8 Opport 387	100 20.02 10.019 10.5 42.966 40%	Q CHANGE (mc3a) (% correct 0.00 100% 0.00 100% 0.00 100% 0.00 100%	
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0 C14NUCE (mAlk) (K-0 FPRE) 0.01 1074 0.01 1075 0.01 1075 0.01 1075 0.01 1075	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0 C14AVCE (m3/a) (F. GF PRE) 0.17 102% 0.14 102% 0.09 102% 0.05 102% 0.02 102%	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Q CHANGE (m3h) (sk 07 PRE) 023 1075 023 1075 019 10275 014 1075 014 1075 015 1075	
	Diraci Partel D TP P D TP R O(2MT) 1905 (mai) (mb) (mb) </td <td>Dotal NetSH P 0 TP Reg DS VEXT P 0 TP Reg A 2 0.00 1.11 1.00 1.00 A 2 0.00 1.11 1.00 1.00 4.00 A 2 0.00 1.01 1.00 1.00 4.00 A 2 0.00 1.01 1.00 1.02 4.00 A 1.0 0.00 1.01 1.00 1.02 4.00 A 1.0 0.00 1.01 1.00 1.02 4.00 A 1.0 0.00 1.01 1.02 1.01 1.01 4.00 A 1.0 0.00 1.02 1.01 1.01 1.01 1.01 1.01 A 1.00 0.01 2.02 1.01 1.01 1.01 1.01 1.01 A 1.00 0.01 2.02 1.01 1.01 1.01 1.0</td> <td>0 CHANGE (mb)g (55 GF PRE) 0.4 (07); 0.19 (025; 0.12 (07); 0.12 (07); 0.12 (07); 0.14 (07);</td> <td></td>	Dotal NetSH P 0 TP Reg DS VEXT P 0 TP Reg A 2 0.00 1.11 1.00 1.00 A 2 0.00 1.11 1.00 1.00 4.00 A 2 0.00 1.01 1.00 1.00 4.00 A 2 0.00 1.01 1.00 1.02 4.00 A 1.0 0.00 1.01 1.00 1.02 4.00 A 1.0 0.00 1.01 1.00 1.02 4.00 A 1.0 0.00 1.01 1.02 1.01 1.01 4.00 A 1.0 0.00 1.02 1.01 1.01 1.01 1.01 1.01 A 1.00 0.01 2.02 1.01 1.01 1.01 1.01 1.01 A 1.00 0.01 2.02 1.01 1.01 1.01 1.0	0 CHANGE (mb)g (55 GF PRE) 0.4 (07); 0.19 (025; 0.12 (07); 0.12 (07); 0.12 (07); 0.14 (07);	
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Lat Control P Q TP R D00 TV F Q TP R A	0 CHANGE (m3N) (50 F P82; 0.73 1075; 0.18 1025; 0.00 1075; 0.13 1075; 0.13 1075;	


APPENDIX H-2 Regional Official Plan Amendment 128 Proposed Pond Results and Rating Curves

PA 128 - Existing (2007) SWM C

ID 1172

A (ha) 21.4

A (ha) 50.3

2 5 10 25 50
 (mm)
 (m3/s)
 (hr)
 (mm)
 (%)

 47.08
 0.782
 19.667
 14.669
 31%

 60.08
 1.209
 19.5
 22.586
 38%

 68.76
 1.522
 19.417
 28.374
 41%

 79.70
 1.399
 19.333
 36.124
 45%

 87.80
 2.2541
 19.333
 34.124
 45%
 A (ha) 336.3
 EVENT
 P
 Q
 TP
 R

 (mm)
 (m3/s)
 (hv)
 (mm)
 (%)

 2
 47.08
 0.575
 19.5
 14.612
 31%

 5
 60.08
 0.89
 19.333
 22.051
 37%

 10
 68.76
 1.121
 19.333
 22.066
 41%

 25
 79.70
 1.429
 19.25
 36.051
 45%

 50
 87.50
 1.6762
 42.088
 45%
 45%
 1175 A (ha) 244.7 ID 1181
 Even
 r
 r
 r
 r

 (mm)
 (m3/s)
 (hv)
 (mm)
 (%)

 2
 47.08
 0.409
 15.5
 14.103
 30%

 5
 60.08
 0.637
 15.417
 21.808
 39%

 10
 68.76
 0.804
 15.333
 27.461
 40%

 25
 79.70
 1.03
 15.25
 40.544
 47%

 50
 87.80
 1.205
 15.25
 40.944
 47%
 A (ha) 118.64

 (mm)
 (m)/e)
 (hr)
 (mm)
 (%)

 2
 47.08
 0.57
 21.5
 14.932
 32%

 5
 60.08
 0.879
 21.333
 22.952
 38%

 10
 68.76
 1.105
 21.52
 28.907
 42%

 25
 79.70
 1.066
 521.67
 36.55
 45%

 50
 87.80
 1.64
 21.167
 46.55
 45%
 A (ha) 281.36
 EVENT
 P
 Q
 TP
 R

 (min)
 (m3/d)
 (br)
 (min)
 (b)

 2
 47.05
 0.559
 17.107
 15.166
 22/16
 26/16

 5
 0.030
 0.059
 17.002
 22.216
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16
 26/16</td A (ha) 176.21

J/S Taunton R						
ID	EVENT	P	Q	TP		
3093		(mm)	(m3/s)	(hr)	(mm)	(%)
	2	47.08	4,417	17.25	12.995	28%
A	5	60.08	6.959	17	20.143	34%
(ha)	10	68.76	8.887	16.833	25.413	37%
2002	25	79.70	11.41	16.667	32.516	41%
	50	87.80	13.383	16.667	38.058	43%
	100	95.92	15.48	16.583	43.821	46%
PR						
-r.	EVENT	Р	٩	TP		
3087	EVENI	(mm)	(m3/s)	(hr)	(mm)	(%)
5007	2	47.08	4.652	17.25	13.036	28%
A	5	60.08	7.369	17,167	20.162	34%
(ha)	10	68.76	9.471	17	25.463	37%
2169	25	79.70	12.235	16.667	32.609	41%
	50	87.80	14.372	16.667	38.18	43%
	100	95.92	16.639	16.5	43.968	46%
S Rossland F						
ID	EVENT	Р	Q	TP		
3082		(mm)	(m3/s)	(hr)	(mm)	(%)
	2	47.08	4.708	17.417	12.891	27%
A	5	60.08	7.511	17.25	19.937	33%
(ha)	10	68.76	9.692	17	25.2	37%
2260	25	79.70	12.578	16.667	32.295	41%
	50	87.80	14.757	16.75	37.827	43%
	100	95.92	17.084	16.583	43.576	45%
ry 2 E						
ID	EVENT	P	۹	TP		
1044		(mm)	(m3/s)	(hr)	(mm)	(%)
	2	47.08	5.504	17.583	13.692	29%
A (ha)	5	60.08	8.835 11.457	17.25	20.881	35%
		68.76				
2701	25 50	79.70 87.80	14.927	16.583 16.5	33.513 39.148	42% 45%
	100	87.80 95.92	20.206	16.5	39.148	45%
	100	90.92	20.206	10.333	44.392	4/ 29
S Bayly St						
ID	EVENT	Р	0	TP		
1033		(mm)	(m3/s)	(hr)	(mm)	(%)
	2	47.08	6.017	18.417	14.808	31%
A	5	60.08	9.561	18.167	22.252	37%
(ha)	10	68.76	12.386	17.75	27.786	40%
2983	25	79.70	16.262	17.083	35.199	44%
	50	87.80	19.176	17	40.95	47%
	100	95.92	22.113	17	46.903	49%
hoal Point Rd						
noal Point Rd	EVENT	Р		TP		2
			Q (m3/s)		(mm)	
ID		P (mm) 47.08		TP (hr) 18.917		R (%) 35%
ID	EVENT	(mm)	(m3/s)	(hr)	(mm)	(%) 35% 41%
ID 1005	EVENT 2	(mm) 47.08	(m3/s) 7.075	(hr) 18.917	(mm) 16.534	(%) 35%
ID 1005 A	2 5	(mm) 47.08 60.08	(m3/s) 7.075 11.003	(hr) 18.917 18.083	(mm) 16.534 24.363	(%) 35% 41%
ID 1005 A (ha)	2 5 10	(mm) 47.08 60.08 68.76	(m3/s) 7.075 11.003 14.139	(hr) 18.917 18.083 17.75	(mm) 16.534 24.363 30.116	(%) 35% 41% 44%
ID 1005 A (ha)	2 5 10 25	(mm) 47.08 60.08 68.76 79.70	(m3/s) 7.075 11.003 14.139 18.509	(hr) 18.917 18.083 17.75 17.333	(mm) 16.534 24.363 30.116 37.781	(%) 35% 41% 44% 47%
1005 A (ha) 3602	2 5 10 25 50	(mm) 47.08 60.08 68.76 79.70 87.80	(m3/s) 7.075 11.003 14.139 18.509 21.795	(hr) 18.917 18.083 17.75 17.333 16.917	(mm) 16.534 24.363 30.116 37.781 43.704	(%) 35% 41% 44% 47% 50%
ID 1005 A (ha) 3602 ske Ontario	2 5 10 25 50 100	(mm) 47.08 60.08 68.76 79.70 87.80 95.92	(m3/s) 7.075 11.003 14.139 18.509 21.795 25.183	(hr) 18.917 18.083 17.75 17.333 16.917 16.833	(mm) 16.534 24.363 30.116 37.781 43.704 49.819	(%) 35% 41% 44% 47% 50% 52%
ID 1005 A (ha) 3602 ke Ontario ID	2 5 10 25 50	(mm) 47.08 60.08 68.76 79.70 87.80 95.92 P	(m3/s) 7.075 11.003 14.139 18.509 21.795 25.183	(hr) 18.917 18.083 17.75 17.333 16.917 16.833 TP	(mm) 16.534 24.363 30.116 37.781 43.704 49.819	(%) 35% 41% 44% 47% 50% 52%
ID 1005 A (ha) 3602 ke Ontario	2 5 10 25 50 100 EVENT	(mm) 47.08 60.08 68.76 79.70 87.80 95.92 P (mm)	(m3/s) 7.075 11.003 14.139 18.509 21.795 25.183 Q (m3/s)	(hr) 18.917 18.083 17.75 17.333 16.917 16.833 TP (hr)	(mm) 16.534 24.363 30.116 37.781 43.704 49.819 (mm)	(%) 35% 41% 44% 47% 50% 52% 8 (%)
ID 1005 A (ha) 3602 kke Ontario ID 1000	2 5 10 25 50 100 EVENT	(mm) 47.08 60.08 68.76 79.70 87.80 95.92 P (mm) 47.08	(m3/s) 7.075 11.003 14.139 18.509 21.795 25.183 Q (m3/s) 7.148	(hr) 18.917 18.083 17.75 17.333 16.917 16.833 TP (hr) 18.917	(mm) 16.534 24.363 30.116 37.781 43.704 49.819 (mm) 16.76	(%) 35% 41% 44% 47% 50% 52% 52%
ID 1005 A (ha) 3602 ke Ontario ID 1000 A	2 5 10 25 50 100 EVENT 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(mm) 47.08 60.08 68.76 79.70 87.80 95.92 P (mm) 47.08 60.08	(m3/s) 7.075 11.003 14.139 18.509 21.795 25.183 Q (m3/s) 7.148 11.142	(hr) 18.917 18.083 17.75 17.333 16.917 16.833 TP (hr) 18.917 18.167	(mm) 16.534 24.363 30.116 37.781 43.704 49.819 (mm) 16.76 24.646	(%) 35% 41% 44% 47% 50% 52% (%) 36% 41%
ID 1005 A (ha) 3602 ke Ontario ID 1000 A (ha)	2 5 50 100 EVENT 2 5 10	(mm) 47.08 60.08 68.76 79.70 87.80 95.92 P (mm) 47.08 60.08 68.76	(m3/s) 7.075 11.003 14.139 18.509 21.795 25.183 Q (m3/s) 7.142 11.142 14.312	(hr) 18.917 18.083 17.75 17.333 16.917 16.833 TP (hr) 18.917 18.167 18.167 17.833	(mm) 16.534 24.363 30.116 37.781 43.704 49.819 (mm) 16.76 24.646 30.432	(%) 35% 41% 44% 50% 52% (%) 36% 41% 44%
ID 1005 A (ha) 3602 ke Ontario ID 1000 A	2 5 10 25 50 100 EVENT 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(mm) 47.08 60.08 68.76 79.70 87.80 95.92 P (mm) 47.08 60.08	(m3/s) 7.075 11.003 14.139 18.509 21.795 25.183 Q (m3/s) 7.148 11.142	(hr) 18.917 18.083 17.75 17.333 16.917 16.833 TP (hr) 18.917 18.167	(mm) 16.534 24.363 30.116 37.781 43.704 49.819 (mm) 16.76 24.646	(%) 35% 41% 44% 47% 50% 52% (%) 36% 41%

DPA 128 - Updated (2011) SWM Criteria	2011 SWM CRITERIA MAIN BRANCH NOCE 9a Q (UNT) S Q (UNT) S		
	(m3ha) (m3ha imp) (m3ha imp) 5 YEAR 0.006 500 0.022 190 25 YEAR 0.012 650 0.047 300 100 YEAR 0.026 800 0.044 350		
PRE-DEVELOPMENT 24 HOUR AE! ID EVENT P Q TP R Q(UNIT)	POST-DEVELOPMENT 24 HOUR AE! ID EVENT P Q TP R Q(U)	NIT)	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1172 (min) (miX)4 (m) (min) (x) (bix) A 5 42.05 0.05 127.27 27.05 0.041 Poi 10 65.78 0.15 12.027 45.78 0.041 Poi 10 65.78 0.15 12.027 45.18 0.041 Poi 10 65.78 0.012 12.47 45.56 0.576 Station 10.01 10.277 45.14 dVs. 0.047 Station 10.01 10.247 45.04 dVs. 0.047 Station 10.01 10.01 10.01 10.01 dVs. 0.014 Station 10.01 10.01 10.01 10.01 dVs. 0.014 dVs.	V02 DST DSCH STORAGE 0 0 0 0.13 0.5567 0.26 0.7237 0.56 0.8907	
D0 EVENT P O TP R Q (pMT) 1737 (mm) (m3) p0 (mm) (b) 0.54 2 47.05 0.2 14.85 15.060 2%* 0.04 4 5 65.05 14.75 2.000 0.04 16.00 2%* 0.05 93.3 26 7.77 0.64 14.50 36.05 6%* 0.01 94.1 26 7.77 0.64 14.50 36.05 6%* 0.01 100 66.02 0.62 14.54 43.09 6%* 0.01	ID EVENT P O TP R S 172 (mm) (m3) (m2) (m1) (m3) (m3) (m1) (m3) (m1) (m1) (m3) (m1)	V02 DST DISCH STORAGE 0 0 0.30 1.9613 0.60 2.5697 1.31 3.1381	
ID EVENT P O TP R Q (MWT) 1724 (mm) (M32) PO (mm) (M32) 0.02 30.02 10.02 <	D EVDHT P O TF R S 1724 (mm) (mJQ) (m) (m) (mJQ) (m)	OCHANDE (N20 PST 0.47 160% DISCH STORAGE 0.51 142% 0 0 0.58 138% 2.02 7.368 1.22 153% 4.04 9.6165 1.65 173% 8.74 11.8381 2.57 199%	
ID EVENT P O TP R Q (MWT) 1737 (mm) (m3) (M) (m) (M)<	D EVDHT P O TF R S 1757 (mm) (mJQ) (P) (P) (Par) (Par) <td>OCHANGE (NJO FREE) (NJO FREE) 0.38 166% DISCH 0.38 143% 0 0 0.38 153% 1.47 7.4730 0.81 157% 2.54 3.7020 1.08 165% 6.38 11.9409 1.60 183%</td> <td></td>	OCHANGE (NJO FREE) (NJO FREE) 0.38 166% DISCH 0.38 143% 0 0 0.38 153% 1.47 7.4730 0.81 157% 2.54 3.7020 1.08 165% 6.38 11.9409 1.60 183%	
ID EVENT P O TP R Q (MWT) 1918 (mm) (m3) 0/f (M3) 0/f 0.03 0/f 0.03 0/f 0.03 0/f 0.03 0/f 0.03 0/f 0.03 0/f 0.01 0/f	D EVDHT P O TF R S 1781	OCHANDE (M20 PST 0.08 120% DISCH STORADE 0.04 106% 0 0 0.14 118% 0.71 2.15%1 0.29 129% 1.42 2.7769 0.60 149% 3.09 3.4177 0.96 169%	
D EVENT P O TP R Q (MWT) 1122 (mm) (max) (m) (max) (M) (m) (max) (M) (M)<	D EVDIT P O TP R S 1122	Ochanoe (m30) (m2 OFR2) V02 DST 0.45 178% DISCH D780A0E 0.55 163% 0 0 0.88 161% 1.69 5.502 1.29 192% 3.38 6.7667 1.71 204% 7.32 8.3283 2.65 241%	
D0 EVENT P Q TP R Q (BWT) 1483 (mm)	D EVENT P O. TP R S 182 (mm) (n0.3) (0.4) (0.4) (0.4) (0.4) 4 2 47.0 0.63 (1.6) (0.4) (0.4) (0.4) (h) 0 6.61% (1.6) (1.6) (1.6) (1.6) (1.6) (1.6) (h) 0 6.61% (1.6)	OCHANGE (%) OF PR2 V02 DST 0.12 122% DISCH STORAGE 0.05 109% 0 0 -0.01 99% 1.05 5283 0.19 114% 2.11 6.8722 0.34 122% 4.58 8.4581 0.61 134%	
UIS Taurton Road - Confuence D FVENT P 0 P (mon) P (mon) P (mon) A 5000 FVENT P 0 0 P P (mon) P (mon) P (mon) A 5000 FVENT P 20 FVENT P (mon) P (mon) P (mon) P (mon) P (mon) P (mon) P (mon) P (mon) P (mon) P (US Tauriton Road: Confusiona D EVDT P (10) T0 (10) (10) (10) (10) (10) (10) (10) (10	Q CHANGE (m34) (% OF PRE) 2.212 100% 2.565 137% 2.857 132% 4.997 144% 6.526 149% 8.734 196%	
CPR B07 2 4700 4 50 5 4500 5 45000 5 450000 5 450000 5 450000 5 4500000 5 4500000 5 4500000 5 45000000 5 45000000000000 5 4500000000000000000000000000000000000	CPR P Q TP R 007 (m3) (m3) (m3) (m3) (m3) 4 6 47.28 4.03 15.03 11.28 47.4 5 6.05.01 10.28 17.03 14.03 40.05 57.6 2104 77.70 17.33 14.03 40.03 57.6 57.6 50 87.80 2.10 13.26 45.28 57.6 44.38 57.6 60 67.62 2.10 13.26 15.25 57.6 44.38 57.6	O CHANGE (m3k) (% OF PRE) 2.68 149% 2.68 139% 5.15 122% 6.73 147% 8.96 154%	
US Research R4 D EVENT P 0 (MAX) P R 0 (MMT) M82 (MAX) (MAX) (MAX) (MAX) (MAX) (MAX) A 5 (MAX) (MA	US Rouburd Rd D EVDF P C TP (num)	O CHANGE (m3/c) (% 0.6 F RE) 2.30 149%. 3.05 131%. 5.18 141%. 6.76 146%. 8.99 153%.	
Hay 22 F FVD17 P O P P P P P R Q (MR) 104 FV F0 R 0 200 5.564 72.03 5.564 72.03 5.564 72.03 5.564 75.03 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O CHANGE (m3/z) (% OF PRE) 2.53 146% 3.01 134% 3.43 130% 5.76 139% 7.48 143% 9.89 149%	
DS Boy B FUT P F P	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	OCHANGE (m3ki) (% OF PRE) 2.72 145% 3.32 155% 3.67 135% 6.4 135% 7.86 141% 10.02 145%	
Board Point Rd D D VENT P Q TP R Q (MNT) 1005 (mm) (md) (Pr) (mm) (S) m3k/ha 2 47.00 7.075 16.317 16.324 57% 0.002 4 5 6.021 10.020 13.020 24.024 0.004 3602 22 7.071 16.301 13.02 24.04 0.004 3602 25 7.071 16.001 13.03 37.01 0.004 3602 26 7.071 16.001 13.03 37.01 0.004 3602 10.02 25.033 16.833 49.874 0.005 100 65.02 25.133 16.833 49.875 0.007	Dicel Point Rd P Q TP R 1055 (mm) (mb34) (Pu) (mm) (%) 1056 2 47.05 10.01 77.33 27.453 49% 40 5 0.53 14.01 17.33 27.453 49% 20 77.07 25.35 15.01 49.81 20% 20% 20 77.07 25.35 15.17 43.86 27% 10.01 20 79.70 25.35 15.17 43.86 27% 10.01 <	Q CHANGE (m3h) (% OF PRE) 2.94 14.1% 3.75 13.5% 6.86 13.7% 8.76 140% 11.19 144%	
Lake Origino 0 0 EVENT P 0 TP R 64040 1000 EVENT P 0 TP R 64040 2 4720 7142 1420 1420 1420 1420 002 A 5 6000 11142 1420 1420 4440 415 002 A 5 6000 11142 1420 4440 415 003 4069 20 717 1425 14264 415 004 400 400 400 400 400 400 400 400 40	Lake Ontario P <t< td=""><td>CHAMSE (mkg) (PL OF PS) 2.99 (42%) 3.80 (42%) 4.55 (12%) 6.87 (12%) 8.86 (10%) 11.22 (44%)</td><td></td></t<>	CHAMSE (mkg) (PL OF PS) 2.99 (42%) 3.80 (42%) 4.55 (12%) 6.87 (12%) 8.86 (10%) 11.22 (44%)	

ROPA 128 - Updated

APPENDIX I Statement of Limiting Conditions and Assumptions

Statement of Limiting Conditions and Assumptions

- 1. This Report/Study (the "Work") has been prepared at the request of, and for the exclusive use of, the Owner, and its affiliates (the "Intended Users"). No one other than the Intended Users has the right to use and rely on the Work without first obtaining the written authorization of Cole Engineering Group Ltd. (Cole Engineering) and its Owner.
- 2. Cole Engineering expressly excludes liability to any party except the Intended Users for any use of, and/or reliance upon, the Work.
- 3. Cole Engineering notes that the following assumptions were made in completing the Work:
 - a) the land use description(s) supplied to us are correct;
 - b) the surveys and data supplied to Cole Engineering by the Owner are accurate;
 - c) market timing, approval delivery and secondary source information is within the control of Parties other than Cole Engineering; and
 - d) there are no encroachments, leases, covenants, binding agreements, restrictions, pledges, charges, liens or special assessments outstanding, or encumbrances which would significantly affect the use or servicing.

Investigations have not been carried out to verify these assumptions. Cole Engineering deems the sources of data and statistical information contained herein to be reliable, but we extend no guarantee of accuracy in these respects.

- 4. Cole Engineering accepts no responsibility for legal interpretations, questions of survey, opinion of title, hidden or inconspicuous conditions of the property, toxic wastes or contaminated materials, soil or sub-soil conditions, environmental, engineering or other factual and technical matters disclosed by the Owner, the Client, or any public agency, which by their nature, may change the outcome of the Work. Such factors, beyond the scope of this Work, could affect the findings, conclusions and opinions rendered in the Work. We have made disclosure of related potential problems that have come to our attention. Responsibility for diligence with respect to all matters of fact reported herein rests with the Intended Users.
- 5. Cole Engineering practices engineering in the general areas of infrastructure and transportation. It is not qualified to and is not providing legal or planning advice in this Work.
- 6. The legal description of the property and the area of the site were based upon surveys and data supplied to us by the Owner. The plans, photographs, and sketches contained in this report are included solely to aide in visualizing the location of the property, the configuration and boundaries of the site, and the relative position of the improvements on the said lands.
- 7. We have made investigations from secondary sources as documented in the Work, but we have not checked for compliance with by-laws, codes, agency and governmental regulations, etc., unless specifically noted in the Work.
- 8. Because conditions, including capacity, allocation, economic, social, and political factors change rapidly and, on occasion, without notice or warning, the findings of the Work expressed herein, are as of the date of the Work and cannot necessarily be relied upon as of any other date without subsequent advice from Cole Engineering.
- 9. The value of proposed improvements should be applied only with regard to the purpose and function of the Work, as outlined in the body of this Work. Any cost estimates set out in the Work are based on construction averages and subject to change.
- 10. Neither possession of the Work, nor a copy of it, carries the right of publication. All copyright in the Work is reserved to Cole Engineering. The Work shall not be disclosed, produced or reproduced, quoted from, or referred to, in whole or in part, or published in any manner, without the express written consent of Cole Engineering and the Owner.
- 11. The Work is only valid if it bears the professional engineer's seal and original signature of the author, and if considered in its entirety. Responsibility for unauthorized alteration to the Work is denied.

Copyright 2010
 Cole Engineering Group Ltd.