PARISH GEOMORPHIC LTD 10 MOUNTAINVIEW ROAD, SOUTH, SUITE 207, GEORGETOWN ONTARIO L7G 4J9 PHONE: (905) 877-9531 FAX: (905) 877-4143 TO: MR. GLENN MCMILLAN, P.ENG., TORONTO AND REGION CONSERVATION **AUTHORITY** FROM: PAUL VILLARD, PH.D. AND JOHN PARISH, M.A. SUBJECT: BANKFULL CHARACTERISTICS AND EROSION THRESHOLDS FOR TRCA REGIONAL MONITORING PROGRAM DETAILED SITES **DATE:** MAY 21, 2003 #### Introduction This report provides information which compliments the fluvial geomorphology component of the TRCA Regional Monitoring Program (Regional Monitoring Program – Fluvial Geomorphology Component – Etobicoke Creek, Mimico Creek and Humber River Watersheds, PARISH Geomorphic Ltd., June 26, 2002; Regional Monitoring Program – Fluvial Geomorphology Component – Don River, Rouge River and Highland Creek Watersheds (Draft), PARISH Geomorphic Ltd., March 21, 2003). Currently the data base consists of 100 detailed monitoring sites covering the Don River, Etobicoke Creek, Highland Creek, Humber River, Mimico Creek, and Rouge River watersheds. These sites, along with those selected for the third phase of the TRCA Regional Monitoring Program, provide representation of the variability of the watersheds within the jurisdiction of the TRCA. This report provides an at-a-glance summary of the bankfull characteristics and erosion thresholds for the 100 sites that have been characterized (see tables in **Appendix A**). The bankfull characteristics and process observations from each detailed site are also provided to set the context for the thresholds, more detailed description of each site can be found in the TRCA Regional Monitoring Database or in the hard copy reports *Regional Monitoring Program – Fluvial Geomorphology Component – Etobicoke Creek, Mimico Creek and Humber River Watersheds* (PARISH Geomorphology Component – Don River, Rouge River and Highland Creek Watersheds (Draft) (PARISH Geomorphic Ltd., March 21, 2003). Within the tables (**Appendix A**), sites are grouped by watershed and relative proximity. The location of the detailed sites are provided in the maps contained in **Appendix B**, which are reproduced from *Regional Monitoring* Program – Fluvial Geomorphology Component – Etobicoke, Mimico and Humber Creek Watersheds (PARISH Geomorphic Ltd., June 26, 2002) and Regional Monitoring Program – Fluvial Geomorphology Component – Don River, Rouge River and Highland Creek Watersheds (Draft) (PARISH Geomorphic Ltd., March 21, 2003). # Methods At each of the detailed sites, cross-sections were measured at ten locations, including pools, riffles and transitional areas. Each cross-section bankfull width and depth, entrenchment, as well as low flow dimensions were recorded. Substrate was sampled using a modified Wolman pebble count. Sub-pavement was also characterized at each cross-section. Bank assessment included measurements of height, angle, bank composition, *in-situ* shear strength, vegetation and rooting depth. These 10 cross-sections were placed over a minimum of two meander wavelengths. A level survey of the site extending upstream and downstream of the 10 cross-section locations was also conducted. The survey included bankfull elevations, maximum pool depth, top and bottom of riffles and any obstruction to flow and provided measures of energy gradient, inter-pool gradient and riffle gradient. The collection of detailed field information allows for the performance of analyses based on critical shear stress and permissible velocities in order to identify erosion thresholds. Streams continually adjust their dimensions to accommodate changes in their sediment transport and discharge regimes. As such, thresholds of particle movement and transport will vary spatially and temporally as watercourses adjust to local variations in slope, bed material, discharge and modifying factors. The calculations performed to determine critical discharge for bed materials were based on formulas for critical shear stress (Shields, modified by Miller et al., 1977) and permissible velocity (Chow, 1959; Neill, 1967; Komar, 1987; Fischenich, 2001). Selection of appropriate thresholds was, in part, dictated by indicators of active processes (e.g. deposition, entrenchment, and excessive bank erosion). Generally, shear stress and permissible velocity equations for non-cohesive materials were applied to the bed materials. The erosion thresholds were based on the threshold for the D_{50} (median grain size), which is the general practice. If a large portion of the bed material was cohesive and the erosion threshold associated with cohesive component was greater than the threshold associated with the D₅₀, then the cohesive materials estimated shear strength was used to provide a characteristic threshold. These thresholds were based on tables provided in Chow (1959). Finally, if there was evidence of excessive bank erosion, a threshold related to the bank material was also calculated. The relative proportion of bank shear stress to the maximum shear stress was calculated. Threshold depths were based on this proportion. The lower of bank and bed threshold (or more conservative measure) was used to define the critical threshold for the channel. With respect to the tables contained in **Appendix A**, several clarifications are required. As many of the models are based on a trapezoidal channel geometry, a single characteristic riffle cross section was extracted from each detailed site for threshold analysis. The depth and the corresponding simplified geometry were used to produce a meaningful threshold discharge. Several clarifications are needed with respect to the results provided in the following tables (**Appendix A**). First, it should be noted that the critical depth calculated by the models is, more specifically, a maximum critical depth of the defined trapezoid. Consequently, in some cases the critical depth of a site is greater than the average bankfull depth. In most cases the maximum bankfull depth would still prove larger than the maximum critical depth. If, in fact, the discharge values calculated by the models exceed bankfull discharge, the models assume that these flows are contained within the general geometry of the bankfull cross section and do not account for the geometry of the floodplain. In these cases, the discharge value provided may be taken as a minimum potential discharge. The Manning's 'n' values provided in Appendix A were for bankfull conditions and were derived from visual estimates to account for factors such as channel geometry and the presence of wood debris and vegetation. Manning's 'n' values for threshold conditions, usually much lower flows, were based primarily on Limerinos' (1970) equation using average bankfull depth and the D₈₄ for a site. In some cases, a visual estimation was used to account for added roughness associated with channel geometry and flow obstructions such as vegetation and woody debris. # Summary The erosion thresholds and bankfull descriptions in this report provide both good spatial coverage and representation of the variability of the watersheds examined. This tool provides a baseline by which future reports can be compared and evaluated. The thresholds should be treated as a guide to threshold values that can be expected within the studied watersheds. It should be noted that the erosion thresholds were based on monitoring sites which were selected to provide a broad coverage of the possible valley segments within the watersheds listed above. These values should be used as a guide, and may need to be supplemented with more detailed assessments for specific applications, for several reasons. Firstly, the selection of sites was based on coverage of variability, not sensitivity. Generally, if an erosion assessment was completed for development, using a stormwater management facility for example, the erosion assessment would include the identification of the most sensitive reaches. These reaches would then provide the controlling thresholds. Secondly, many of these valley segments could be broken into smaller reaches, allowing identification of localized areas of channel sensitivity. Thirdly, with continued urbanization and associated stream adjustment, it can be expected that these erosion thresholds would vary over time. # References Chow, V.T., 1959. *Open-channel hydraulics*. McGraw Hill. Boston MA. Fischenich, C., 2001. *Stability thresholds for stream restoration materials*. USACE Research and Development. Technical note SR-29. 10pp. Komar, P.D., 1987. Selective gravel entrainment and the empirical evaluation of flow competence. *Sedimentology*. 34:1165-1176. Limerinos, J.T., 1970. *Determination of Manning coefficient from measured bed roughness in natural channels.* USGS Water Supply Paper 1898B. Miller, J.P., McCave, I.N., and Komar, P.D., 1977. Threshold of sediment motion under unidirectional currents. *Sedimentology*, 24, 507-527. Neill, C.R., 1967. Mean velocity criterion for scour of coarse uniform bed material. In: Chang, H.H. (1988) *Fluvial Processes in River Engineering* page 90. Krieger Publishing, USA. **A**ppendix A **Table 1.** Don River erosion thresholds. | Parameter | GD-1 | D-3 | D-3b | |--|---|--|--| | Average Bankfull Width (m) | 7.66 | 5.31 | 9.76 | | Average Bankfull Depth (m) | 0.57 | 0.72 | 0.76 | | Bankfull Gradient (%) | 0.18 | 0.33 | 0.54 | | Bed Material D ₅₀ (m) | 0.00046 | 0.010 | 0.050 | | Bed Material D ₈₄ (m) | 0.020 | 0.080 | 0.16 | | Bedrock Exposure/Control |
No | No | No | | Bank Materials | Si/vfs/fs | Si/vfs/fs | Si/vfs/fs/cl | | Manning's n at Bankfull | 0.040 | 0.040 | 0.040 | | Average Bankfull Velocity (ms-1) | 0.82 | 1.34 | 1.78 | | Average Bankfull Discharge (m³s-¹) | 2.55 | 6.80 | 20.45 | | Flow competence (ms-1) @ D ₅₀ | | 0.58 | 1.20 | | Flow competence (ms-1) @ D ₈₄ | 0.78 | 1.48 | 2.01 | | Fractive Force at Bankfull (Nm ⁻²) | 11.96 | 29.08 | 50.64 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 3.591 | 7.43 | 36.42 | | Critical Shear (Nm ⁻²) @ D ₈₄ | 14.20 | 57.98 | 112.97 | | Bank Shear (Nm ⁻²) | 3.591 | | 12.452 | | Stream Power (Wm ⁻¹) | 72.11 | 258.82 | 1880.07 | | Stream Power per Unit Width | 15.68 | 45.73 | 156.67 | | (Wm ⁻²) | | | | | Critical Discharge (m³s-¹) | 1.06 | 0.70 | 1.74 | | Critical Depth (m) | 0.40 | 0.27 | 0.31 | | Critical Velocity (ms ⁻¹) | 0.94 | 0.59 | 0.74 | | Site Description | - valley wall contact,
banks eroded, large
log causing scour, tree
roots exposed, major
woody debris, point
bar formation near
d/s end of segment | - both banks eroding,
bank protection,
exposed clay
subpavement, medial
deposition, valley wall
contact, major bank
slumping, overhanging
trees | Woody debris,
banks eroded, no
bed morphology,
valley wall contact,
lateral deposition | | Method | Fischenich (2001) | Komar
(1987) | Fischenich (2001) | ¹ Loam / sandy clay loose PARISH Geomorphic Ltd. ² Alluvial silt | Parameter | D-4 | D-4a | D-4b | D-26 | D-31 | |---|---|--|---|--|--| | Average Bankfull Width (m) | 10.56 | 10.35 | 13.57 | 9.38 | 9.21 | | Average Bankfull Depth (m) | 0.72 | 0.73 | 0.95 | 0.51 | 0.58 | | Bankfull Gradient (%) | 0.35 | 0.14 | 0.11 | 0.15 | 0.81 | | Bed Material D ₅₀ (m) | 0.029 | 0.016 | 0.029 | 0.027 | 0.029 | | Bed Material D ₈₄ (m) | 0.084 | 0.090 | 0.19 | 0.19 | 0.087 | | Bedrock Exposure/Control | No | No | No | No | No | | Bank Materials | Si/vfs/fs | Si/vfs/fs/cl | Cl/si/vfs/fs | Fs/ms/cs/si | Si/vfs/fs/cl | | Manning's n at Bankfull | 0.035 | 0.035 | 0.035 | 0.040 | 0.040 | | Average Bankfull Velocity (ms-1) | 1.32 | 0.94 | 1.14 | 2.16 | 1.63 | | Average Bankfull Discharge (m³s-¹) | 9.74 | 10.27 | 4.99 | 8.09 | 7.83 | | Flow competence (ms ⁻¹) @ D ₅₀ | 0.93 | 0.72 | 0.93 | 0.89 | 0.93 | | Flow competence (ms-1) @ D ₈₄ | 1.52 | 1.57 | 2.19 | 2.20 | 1.54 | | Tractive Force at Bankfull (Nm-2) | 23.55 | 11.25 | 11.72 | 87.37 | 48.97 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 20.90 | 12.02 | 5.90 | 19.38 | 20.98 | | Critical Shear (Nm ⁻²) @ D ₈₄ | 61.40 | 65.70 | 42.83 | 137.30 | 63.59 | | Bank Shear (Nm ⁻²) | 3.591 | 3.591 | 3.591 | | | | Stream Power (Wm ⁻¹) | 328.64 | 138.90 | 108.96 | 1001.33 | 1326.10 | | Stream Power per Unit Width (Wm-2) | 30.43 | 10.37 | 9.64 | 156.46 | 170.01 | | Critical Discharge (m³s-1) | 0.73 | 4.08 | 2.16 | 1.39 | 1.42 | | Critical Depth (m) | 0.18 | 0.52 | 0.53 | 0.29 | 0.28 | | Critical Velocity (ms-1) | 0.47 | 0.64 | 0.44 | 0.89 | 0.93 | | Site Description | -large woody
debris, bank
protection has
fallen into
channel, both
banks eroded,
valley wall
contact, trees
falling into
channel | - Both banks eroded, exposed clay subpavement, tree roots exposed, deposition by bank, valley wall eroded, medial deposition, woody debris, bank protection near golf course | -valley wall contact, tree roots exposed, both banks eroded, point bar development, exposed clay subpavement, large rocks in channel, medial deposition, undercut banks | - Eroding and undercut banks, fallen trees, deposition by right bank, large rocks in channel, concrete slabs in the middle of channel at d/s portion of site | - Fallen trees
and exposed
roots, medial
deposition,
eroded banks,
eroded man
holes, valley
wall contact, | | Method | Fischenich
(2001) | property Fischenich (2001) | Fischenich
(2001) | Komar
(1987) | Komar
(1987) | ¹ Loam / sandy clay loose PARISH Geomorphic Ltd. ii | Parameter | D-5 | D-7 | D-13 | D-14 | |---|--|---|---|--| | Average Bankfull Width (m) | 4.13 | 7.99 | 10.22 | 7.49 | | Average Bankfull Depth (m) | 0.45 | 0.62 | 0.73 | 0.71 | | Bankfull Gradient (%) | 0.99 | 0.41 | 0.54 | 0.38 | | Bed Material D ₅₀ (m) | 0.0038 | 0.0081 | 0.012 | 0.050 | | Bed Material D ₈₄ (m) | 0.012 | 0.059 | 0.062 | 0.14 | | Bedrock Exposure/Control | No | No | No | No | | Bank Materials | Si/cl/vfs | Si/vfs/fs/cl | Vfs/fs/ms | Fs/ms/cs/vcs | | Manning's n at Bankfull | 0.035 | 0.035 | 0.040 | 0.035 | | Average Bankfull Velocity (ms ⁻¹) | 1.66 | 1.00 | 1.86 | 1.51 | | Average Bankfull Discharge (m³s-¹) | 3.11 | 12.28 | 20.46 | 6.46 | | Flow competence (ms ⁻¹) @ D ₅₀ | 0.34 | 0.52 | 0.62 | 1.19 | | Flow competence (ms-1) @ D ₈₄ | 0.62 | 1.29 | 1.32 | 1.93 | | Tractive Force at Bankfull (Nm-2) | 43.45 | 19.66 | 53.96 | 29.56 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 2.77 | 21.12 | 8.67 | 36.06 | | Critical Shear (Nm ⁻²) @ D ₈₄ | 12.62* | 135.63 | 45.09 | 102.99 | | Bank Shear (Nm ⁻²) | | | | 3.591 | | Stream Power (Wm ⁻¹) | 445.48 | 173.08 | 1373.75 | 205.94 | | Stream Power per Unit Width (Wm ⁻²) | 107.34 | 19.23 | 127.20 | 38.14 | | Critical Discharge (m³s-¹) | 0.24 | 0.70 | 1.027 | 1.50 | | Critical Depth (m) | 0.13 | 0.18 | 0.20 | 0.10 | | Critical Velocity (ms ⁻¹) | 1.00 | 0.52 | 0.62 | 0.82 | | Site Description | Substantial
transient fines in
the channel | - High eroding
banks, large
willow,
exposed roots
along both
banks,
exposed clay
subpavement | - Clay
subpavement
exposed, banks
eroded with
exposed tree
roots, point
bar
development,
vertical banks,
major woody
debris, leaning
trees | - Banks eroded,
concrete slabs
in channel,
banks eroded
above bankfull,
deposition, tree
roots exposed,
large boulders
embedded in
bank | | Method | Komar
(1987) | Komar
(1987) | Komar
(1987) | Fischenich
(2001) | ^{*} Critical discharge based on D_{84} as fines appeared transient 1 Loam / sandy clay loose iii PARISH Geomorphic Ltd. | Parameter | D-17 | D-19 | D-22 | D-30 | D-20 | |--|---|--|--|---|--| | Average Bankfull Width (m) | 18.98 | 16.36 | 10.21 | 7.89 | 22.04 | | Average Bankfull Depth (m) | 0.95 | 0.92 | 0.71 | 0.56 | 1.10 | | Bankfull Gradient (%) | 0.32 | 0.36 | 0.19 | 0.16 | 0.14 | | Bed Material D ₅₀ (m) | 0.066 | 0.047 | 0.011 | 0.053 | 0.014 | | Bed Material D ₈₄ (m) | 0.19 | 0.14 | 0.15 | 0.13 | 0.085 | | Bedrock Exposure/Control | No | No | No | No | Yes | | Bank Materials | Si/vfs/fs | Si/vfs/fs/ms | Si/vfs/fs/ms | Si/vfs/cl/ms | Si/vfs/fs/cl | | Manning's n at Bankfull | 0.035 | 0.040 | 0.035 | 0.040 | 0.040 | | Average Bankfull Velocity (ms-1) | 2.14 | 1.84 | 3.62 | 2.26 | 1.38 | | Average Bankfull Discharge (m³s- ¹) | 57.14 | 56.54 | 27.33 | 11.62 | 72.92 | | Flow competence (ms-1) @ D ₅₀ | 1.36 | 1.16 | 0.59 | 1.23 | 0.67 | | Flow competence (ms-1) @ D ₈₄ | 2.20 | 1.93 | 1.96 | 1.83 | 1.53 | | Tractive Force at Bankfull (Nm-2) | 47.87 | 48.13 | 165.13 | 94.33 | 24.75 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 48.37 | 33.94 | 7.79 | 38.68 | 10.20 | | Critical Shear (Nm ⁻²) @ D ₈₄ | 137.16 | 103.07 | 106.93 | 91.53 | 62.06 | | Bank Shear (Nm ⁻²) | 3.591 | 3.591 | | 18.202 | | | Stream Power (Wm ⁻¹) | 1540.90 | 2116.79 | 4457.09 | 1743.09 | 1643.30 | | Stream Power per Unit Width (Wm ⁻²) | 88.05 | 94.08 | 512.31 | 207.51 | 56.28 | | Critical Discharge (m³s-1) | 2.67 | 1.56 | 0.82 | 1.52 | 9.34 | | Critical Depth (m) | 0.33 | 0.20 | 0.22 | 0.21 | 0.54 | | Critical Velocity (ms-1) | 0.59 | 0.35 | 1.13 | 0.98 | 0.67 | | Site Description | - Banks
eroded,
exposed tree
roots, valley
wall contact,
stones
embedded in
bank, large
cobbles in
channel | - Concrete
slabs
protecting
bank, undercut
and eroded
banks, exposed
tree roots,
point bar
development | - Gabion failed,
channel
eroded
into clay
subpavement,
valley wall
contact, | - Both banks
eroded with
tree roots
exposed, large
cobbles in
channel, woody
debris, banks
undercut, point
bar
development | - Concrete slabs
protecting bank,
banks poorly
vegetated,
bankfull not
well defined,
eroded, banks,
exposed
bedrock,
exposed roots
on bank, slope
failure | | Method | Chow
(1959) | Chow
(1959) | Fischenich
(2001) | Fischenich
(2001) | Komar
(1987) | ¹ Loam / sandy clay loose ² consolidated clay iv PARISH Geomorphic Ltd. **Table 2.** Etobicoke Creek erosion thresholds. | Parameter | GET-1 | GET-2 | GET-3 | GET-4 | GET-5 | |--|--|---|--|--|--| | Average Bankfull Width (m) | 21.97 | 8.17 | 20.32 | 13.12 | 8.51 | | Average Bankfull Depth (m) | 0.92 | 0.52 | 0.80 | 0.66 | 0.78 | | Bankfull Gradient (%) | 0.56 | 0.014 | 0.39 | 0.77 | 0.46 | | Bed Material D ₅₀ (m) | 0.044 | 0.011 | 0.039 | 0.055 | 0.011 | | Bed Material D ₈₄ (m) | 0.19 | 0.10 | 0.19 | 0.21 | 0.091 | | Bedrock Exposure/Control | Yes | No | Yes | Yes | Yes | | Bank Materials | | | | | | | Manning's n at Bankfull | 0.044 | 0.041 | 0.046 | 0.037 | 0.036 | | Average Bankfull Velocity (ms-1) | 1.50 | 1.63 | 1.17 | 1.79 | 1.85 | | Average Bankfull Discharge (m³s-¹) | 29.80 | 7.67 | 19.04 | 15.95 | 11.94 | | Flow competence (ms-1) @ D ₅₀ | 1.12 | 0.60 | 1.07 | 1.25 | 0.59 | | Flow competence (ms-1) @ D ₈₄ | 2.19 | 1.67 | 2.24 | 2.33 | 1.58 | | Tractive Force at Bankfull (Nm ⁻²) | 50.50 | 70.05 | 30.59 | 49.85 | 35.14 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 31.75 | 8.12 | 28.65 | 39.96 | 7.95 | | Critical Shear (Nm ⁻²) @ D ₈₄ | 136.35 | 75.50 | 142.42 | 155.71 | 66.55 | | Bank Shear (Nm ⁻²) | | | 112.12 | | | | Stream Power (Wm ⁻¹) | 1407.30 | 1038.48 | 728.26 | 952.60 | 846.95 | | | 65.80 | 124.76 | 36.12 | 71.92 | 118.79 | | Stream Power per Unit Width (Wm ⁻²) | 03.00 | 124.70 | 30.12 | 71.92 | 116.79 | | Critical Discharge (m³s-1) | 4.50 | 0.79 | 6.38 | 5.88 | 0.594 | | Critical Depth (m) | 0.45 | 0.26 | 0.53 | 0.60 | 0.24 | | Critical Velocity (ms ⁻¹) | 0.84 | 1.02 | 0.82 | 1.25 | 0.59 | | Site Description | Bedrock bed Incision Large lateral bars, knickpoint in profile Gabion, armour stone along banks Valley wall erosion Uprooted trees Relatively stable Natural | Substantial bank erosion Medial bar Woody debris Pool-riffle Small flow Gabion Cobble, gravel Appears natural in forest, altered in golf course but unstable in both. | Steep valley walls Bank erosion Incising Channel confined by valley walls Knickpoint Valley wall contact Upstream end experiencing siltation Bedrock bed Natural | Several areas of
significant
erosion, minor
woody debris.
Upper reach
stable with low
sinuosity. | Beaver dam at bottom of reach. u/s split in channel Exposed bedrock (shale) Storm drain Bank slumping Lateral bar formation Alluvial deposits Scour pool | | Method | Fischenich (2001) | Chow
(1959) | Fischenich
(2001) | Komar
(1987) | Komar
(1987) | PARISH Geomorphic Ltd. | Parameter | GET-6 | GET-7 | GET-8 | GET-9 | GET-10 | |---|--|---|--|--|--| | Average Bankfull Width (m) | 9.99 | 5.51 | 10.43 | 6.54 | 3.22 | | Average Bankfull Depth (m) | 0.78 | 0.44 | 0.76 | 0.42 | 0.40 | | Bankfull Gradient (%) | 0.13 | 0.21 | 0.96 | 0.056 | 0.77 | | Bed Material D_{50} (m) | 0.014 | 0.00027 | 0.010 | Clay/silt | 0.000012 | | Bed Material D ₈₄ (m) | 0.074 | 0.16 | 0.086 | Clay/silt | 0.015 | | Bedrock Exposure/Control | No | No | No | No | No | | Bank Materials | | | | | | | Manning's n at Bankfull | 0.035 | 0.035 | 0.036 | 0.033 | 0.033 | | Average Bankfull Velocity (ms-1) | 0.88 | 0.74 | 2.34 | 0.94 | 1.44 | | Average Bankfull Discharge (m³s-¹) | 7.14 | 1.79 | 19.14 | 1.07 | 1.90 | | Flow competence (ms ⁻¹) @ D ₅₀ | 0.67 | | 0.58 | | | | Flow competence (ms-1) @ D ₈₄ | 1.43 | 2.08 | 1.54 | | 0.68 | | Tractive Force at Bankfull (Nm-2) | 9.92 | 8.82 | 71.56 | 2.26 | 30.09 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 10.23 | 0.20 | 7.61 | | 12.45 | | Critical Shear (Nm ⁻²) @ D ₈₄ | 53.80 | 120.79 | 63.03 | | 10.83 | | Bank Shear (Nm ⁻²) | | | | 9.60 | | | Stream Power (Wm ⁻¹) | 91.05 | 25.66 | 1802.10 | 13.03 | 188.03 | | Stream Power per Unit Width (Wm ⁻²) | 9.22 | 4.65 | 171.0 | 1.99 | 58.67 | | Critical Discharge (m³s-¹) | 7.14 | 0.05 | 1.61 | 30.82 | 0.25 | | Critical Depth (m) | 0.52 | 0.19 | 0.28 | 1.76 | 0.16 | | Critical Velocity (ms-1) | 0.67 | 0.22 | 1.00 | 2.15 | 1.02 | | Site Description | Storm sewer
Woody debris
Turbid water
Bare banks
Garbage in
channel | Rip rap along
both banks
Lots of purple
loosestrife in
channel
Major woody
debris
Turbid water
Armor stone
Garbage in
channel
Engineered | Planform
migration,
Channel
splitting | Bank slumps Stagnant, turbid water Siltation Major bank slumping Entrenched channel Bank erosion Altered | Cattails in
channel
Eroded banks
Entrenched
channel
Stagnant water
Siltation
Valley wall
contact
Scour pool | | Method | Komar
(1987) | Neill
(1967) | Komar
(1987) | Chow
(1959) | Fischenich
(2001) | PARISH Geomorphic Ltd. vi Table 3. Highland Creek erosion thresholds. | Parameter | GH-1 | H-2a | H-2b | |--|---|---|---| | Average Bankfull Width (m) | 9.27 | 9.65 | 12.39 | | Average Bankfull Depth (m) | 0.88 | 0.99 | 0.77 | | Bankfull Gradient (%) | 0.21 | 0.37 | 0.52 | | Bed Material D ₅₀ (m) | 0.0023 | 0.018 | 0.078 | | Bed Material D ₈₄ (m) | 0.075 | 0.095 | 0.19 | | Bedrock Exposure/Control | No | No | No | | Bank Materials | Cl/si/fs | Vfs/fs/si/ms | Vfs/fs/ms | | Manning's n at Bankfull | 0.026 | 0.035 | 0.035 | | Average Bankfull Velocity (ms-1) | 1.25 | 1.36 | 1.58 | | Average Bankfull Discharge (m³s-¹) | 10.89 | 10.22 | 15.62 | | Flow competence (ms-1) @ D ₅₀ | 0.29 | 0.75 | 1.46 | | Flow competence (ms-1) @ D ₈₄ | 1.44 | 1.61 | 2.21 | | Tractive Force at Bankfull (Nm-2) | 19.27 | 25.20 | 34.15 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 3.591 | 13.40 | 56.67 | | Critical Shear (Nm ⁻²) @ D ₈₄ | 54.34 | 69.49 | 138.32 | | Bank Shear (Nm ⁻²) | 3.591 | | | | Stream Power (Wm ⁻¹) | 235.80 | 627.37 | 594.72 | | Stream Power per Unit Width (Wm ⁻²) | 25.35 | 58.09 | 40.18 | | Critical Discharge (m³s-¹) | 1.34 | 2.48 | 4.74 | | Critical Depth (m) | 0.31 | 0.36 | 0.49 | | Critical Velocity (ms-1) | 0.54 | 0.75 | 1.10 | | Site Description | undercuts, thatch in
shrubs 1.2 m above
bankfull, mid
channel sand/gravel
deposit, right bank
slumping, filter cloth
across bed of
channel, exposed
clay sub-pavement
on left bank | - gabions on right bank,
sand deposits along left
bank, exposed tree roots
and toe erosion along
right bank, undercut
right bank, left bank
slumping and toe
erosion, rock dam along
right bank, thalweg
along left bank | - boulders used as bank protection along left bank, right bank is vertical with overbank sand deposition, gravel deposition close to right bank, central thalweg, thatch at bankfull on both banks, point bar along right bank near mid segment, exposed tree roots on both banks | | Method | Fischenich
(2001) | Komar
(1987) | Komar
(1987) | ¹ Loam / sandy clay loose PARISH Geomorphic Ltd. vii | Parameter | H-4a | H-6 | H-9 | H-10 | |---|---|---
---|---| | Average Bankfull Width (m) | 15.64 | 10.33 | 17.74 | 25.09 | | Average Bankfull Depth (m) | 0.58 | 0.61 | 0.94 | 0.90 | | Bankfull Gradient (%) | 0.71 | 0.46 | 0.57 | 0.37 | | Bed Material D ₅₀ (m) | 0.042 | 0.028 | 0.019 | 0.015 | | Bed Material D ₈₄ (m) | 0.16 | 0.088 | 0.090 | 0.062 | | Bedrock Exposure/Control | No | No | No | No | | Bank Materials | Fs/cl/vfs/si | Si/vfs/cl/fs | Cl/fs/ms | Vfs/fs/ms | | Manning's n at Bankfull | 0.035 | 0.035 | 0.040 | 0.035 | | Average Bankfull Velocity (ms ⁻¹) | 2.41 | 1.72 | 2.12 | 1.88 | | Average Bankfull Discharge (m³s-¹) | 25.28 | 8.56 | 39.39 | 38.26 | | Flow competence (ms ⁻¹) @ D ₅₀ | 1.10 | 0.91 | 0.76 | 0.69 | | Flow competence (ms-1) @ D ₈₄ | 2.06 | 1.55 | 1.56 | 1.32 | | Tractive Force at Bankfull (Nm ⁻²) | 69.65 | 37.56 | 66.82 | 40.96 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 30.30 | 20.03 | 13.62 | 11.14 | | Critical Shear (Nm ⁻²) @ D ₈₄ | 119.38 | 64.10 | 65.19 | 45.52 | | Bank Shear (Nm ⁻²) | | | | | | Stream Power (Wm ⁻¹) | 1488.63 | 543.71 | 2580.97 | 1547.78 | | Stream Power per Unit Width (Wm-2) | 141.77 | 90.62 | 166.41 | 85.99 | | Critical Discharge (m³s-¹) | 4.74 | 1.63 | 1.90 | 2.95 | | Critical Depth (m) | 0.49 | 0.39 | 0.28 | 0.28 | | Critical Velocity (ms-1) | 1.10 | 0.91 | 0.76 | 0.69 | | Site Description | - lots of woody debris in channel, thalweg towards left bank, valley wall by left bank slumping, chute beside right bank full, major large deposition along right bank, point bar by left bank, both banks eroding, exposed clay in lower segment of site | -both banks eroded and slumping, engineered, straight channel, rip-rap on both banks, thalweg by right bank, top of bank deposition on both banks, medial deposition by left bank | - thalweg along right bank, point bar along left bank, vertical eroded valley wall on right bank, both banks eroded, large rocks and concrete slabs in channel, trees falling into channel, medial deposition | - valley wall eroded
on left bank, gravel
deposition along
right bank, right
bank eroded,
migrating point bar
forming riffles,
overhanging trees
along left bank, right
bank toe erosion,
medial deposition | | Method | Komar
(1987) | Komar
(1987) | Komar
(1987) | Komar
(1987) | PARISH Geomorphic Ltd. viii **Table 4.** Humber River erosion thresholds. | Parameter | GHU-1 | GHU-2 | GHU-3 | GHU-4 | GHU-5 | |--|--|--|---|---|--| | Average Bankfull Width (m) | 52.91 | 46.37 | 20.21 | 6.34 | 30.25 | | Average Bankfull Depth (m) | 1.19 | 0.93 | 0.63 | 0.69 | 1.05 | | Bankfull Gradient (%) | 0.17 | 0.34 | 0.58 | 0.45 | 0.226 | | Bed Material D ₅₀ (m) | 0.000039 | 0.12 | 0.033 | 0.012 | 0.019 | | Bed Material D ₈₄ (m) | 0.00040 | 0.21 | 0.18 | 0.056 | 0.11 | | Bedrock Exposure/Control | No | No | Yes | No | Yes | | Bank Materials | Si/vfs/ms/cl | Si/cl/vfs | Si/cl/vfs | Si/vfs/cl | Si/vfs/cl | | Manning's n at Bankfull | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | | Average Bankfull Velocity (ms-1) | 1.08 | 1.99 | 1.61 | 1.59 | 1.76 | | Average Bankfull Discharge (m³s-1) | 58.93 | 132.13 | 16.29 | 6.61 | 68.91 | | Flow competence (ms-1) @ D ₅₀ | | 1.80 | 0.99 | 0.62 | 0.76 | | Flow competence (ms-1) @ D ₈₄ | 0.13 | 2.32 | 2.15 | 1.26 | 1.70 | | Tractive Force at Bankfull (Nm-2) | 14.73 | 43.37 | 36.07 | 33.43 | 32.46 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 3.83 ⁺ | 88.21 | 23.96 | 8.74 | 13.55 | | Critical Shear (Nm ⁻²) @ D ₈₄ | | 154.49 | 130.75 | 40.94 | 78.23 | | Bank Shear (Nm ⁻²) | | 18.20 ¹ | | | | | Stream Power (Wm ⁻¹) | 2437.81 | 3572.12 | 698.36 | 217.16 | 95.78 | | Stream Power per Unit Width (Wm ⁻²) | 39.64 | 69.77 | 43.65 | 40.22 | 35.15 | | Critical Discharge (m³s-¹) | 4.44 | 17.01 | 5.74 | 0.49 | 8.74 | | Critical Depth (m) | 0.23 | 0.47 | 0.51 | 0.21 | 0.52 | | Critical Velocity (ms-1) | 0.44 | 0.78 | 0.99 | 0.62 | 0.76 | | Site Description | -uneven banks
with erosion
present, dry
tributary
present, woody
debris in
channel, low
sinuosity | - bank is
terracing with
minor
slumping and
fallen trees,
some large
boulders in
channel, island
present | -one side of
channel is low
lying
floodplain
access,
bankfull not
well defined,
valley contact
with coarse
shale deposits,
bedrock
exposed | - heavy
bank
erosion, low
sinuosity,
exposed
tree roots,
large slump
along one
bank | -bank
slumping,
vertical and
eroding
banks,
sandy
deposits | | Method | Chow
(1959) | Fischenich
(2001) | Komar
(1987) | Komar
(1987) | Komar
(1987) | ⁺ Heavy clay soil loose to fairly compact 1 mixed alluvium from clay to cobble PARISH Geomorphic Ltd. ix | Parameter | GHU-6 | GHU-7 | GHU-8 | GHU-9 | GHU-10 | |--|--|---|--|---|--| | Average Bankfull Width (m) | 4.07 | 9.26 | 5.22 | 6.91 | 11.86 | | Average Bankfull Depth (m) | 0.60 | 0.62 | 0.32 | 0.40 | 0.59 | | Bankfull Gradient (%) | 0.36 | 0.46 | 0.74 | 0.61 | 0.14 | | Bed Material D ₅₀ (m) | 0.000050 | 0.0215 | 0.00042 | 0.0279 | 0.0057 | | Bed Material D ₈₄ (m) | 0.042 | 0.11 | 0.040 | 0.13 | 0.088 | | Bedrock Exposure/Control | No | Yes | No | Yes | No | | Bank Materials | Cl/si/vfs/fs | Vcs/pebble | Cl/si | Si/cl/vfs | Si/cl/fs/vfs | | Manning's n at Bankfull | 0.035 | 0.04 | 0.035 | 0.035 | 0.035 | | Average Bankfull Velocity (ms-1) | 1.00 | 1.43 | 1.69 | 1.22 | 0.76 | | Average Bankfull Discharge (m³s-1) | 1.51 | 6.63 | 2.72 | 3.46 | 4.96 | | Flow competence (ms-1) @ D ₅₀ | | 0.81 | | 0.91 | 0.44 | | Flow competence (ms-1) @ D ₈₄ | 1.10 | 1.74 | 1.07 | 1.85 | 1.55 | | Tractive Force at Bankfull (Nm-2) | 15.73 | 34.89 | 41.48 | 24.07 | 8.27 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 4.79+ | 15.66 | 3.83* | 20.32 | 4.15 | | Critical Shear (Nm ⁻²) @ D ₈₄ | 30.37 | 82.67 | 28.84 | 94.55 | 63.81 | | Bank Shear (Nm ⁻²) | | | | | | | Stream Power (Wm ⁻¹) | 60.95 | 312.20 | 233.21 | 131.39 | 85.28 | | Stream Power per Unit Width (Wm ⁻²) | 17.93 | 52.03 | 82.99 | 18.58 | 7.90 | | Critical Discharge (m³s-¹) | 0.65 | 1.36 | 0.03 | 1.68 | 4.74 | | Critical Depth (m) | 0.14 | 0.38 | 0.05 | 0.39 | 0.34 | | Critical Velocity (ms-1) | 0.94 | 0.82 | 0.27 | 0.91 | 0.44 | | Site Description | -eroded and
slumping
banks, siltation
in pools,
relatively
narrow section
of river | -eroding banks,
valley wall
contact,
exposed
bedrock,
woody debris
in floodplain,
mid channel
bar, beaver
pond present
downstream | poorly
defined, both
banks
eroding, dry | erosion,
channel is dry
with some
stagnant
water pools,
narrow | - eroded
slumping
banks, woody
debris in
channel | | Method | Chow
(1959) | Komar
(1987) | Chow (1959) | Komar
(1987) | Komar
(1987) | ⁺ Cohesive clay PARISH Geomorphic Ltd. x ^{*} Sandy clay | Parameter | GHU-11 | GHU-12 | GHU-13 | GHU-14 | GHU-15 | |---|--|---|----------------|---|---| | Average Bankfull Width (m) | 12.31 | 5.09 | 6.78 | 5.99 | 6.30 | | Average Bankfull Depth (m) | 0.68 | 0.40 | 0.30 | 0.42 | 0.34 | | Bankfull Gradient (%) | 0.29 | 0.92 | 0.49 | 0.48 | 0.57 | | Bed Material D_{50} (m) | 0.0125 | 0.00078 | 0.0000087 | 0.0056 | 0.0006 | | Bed Material D ₈₄ (m) | 0.0962 | 0.0477 | 0.0098 | 0.0758 | 0.0605 | | Bedrock Exposure/Control | No | No | No | No | Yes | | Bank Materials | Cl/fs/si/vfs | Cl/fs/vfs/si | Cl/si/vfs/fs | Si/cl/ms/vfs | Cl/si/fs/ms | | Manning's n at Bankfull | 0.035 | 0.040 | 0.040 | 0.040 | 0.035 | | Average Bankfull Velocity (ms-1) | 1.09 | 1.34 | 0.78 | 1.08 | 1.16 | | Average Bankfull Discharge (m³s-¹) | 8.76 | 3.26 | 1.36 | 1.68 | 2.33 | | Flow competence (ms ⁻¹) @ D ₅₀ | 0.63 | | | 0.44 | | | Flow competence (ms-1) @ D ₈₄ | 1.62 | 1.17 | 0.56 | 1.45 | 1.31 | | Tractive Force at Bankfull (Nm-2) | 17.00 | 37.79 | 14.39 | 23.04 | 22.09 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 9.10 | 4.79 + | 4.79 +
 4.08 | 4.79 + | | Critical Shear (Nm ⁻²) @ D ₈₄ | 70.07 | 34.74 | 7.14 | 55.21 | 44.07 | | Bank Shear (Nm ⁻²) | | | | | | | Stream Power (Wm ⁻¹) | 230.79 | 366.57 | 116.76 | 78.05 | 123.27 | | Stream Power per Unit Width (Wm-2) | 17.20 | 63.20 | 20.13 | 24.39 | 24.31 | | Critical Discharge (m³s-1) | 2.54 | 0.069 | 0.18 | 0.19 | 0.063 | | Critical Depth (m) | 0.35 | 0.05 | 0.10 | 0.16 | 0.09 | | Critical Velocity (ms-1) | 0.63 | 0.30 | 0.62 | 0.41 | 0.33 | | Site Description | -left bank
eroded, point
bar on right
bank, woody
debris in
channel on left
side, some
slumping on
left bank, valley
wall contact
right bank | left bank
eroding,
downstream
part changes | | slumping and
eroding,
willow tress
overhanging | -fairly entrenched,
bedrock exposed,
dry channel, rip-
rap and erosion
along both banks,
channel mostly
vegetated, lots of
woody debris,
exposed tree
roots, multiple
channels, | | Method | Komar
(1987) | Fischenich
(2001) | Chow
(1959) | Komar
(1987) | Fischenich
(2001) | ⁺ Cohesive clay PARISH Geomorphic Ltd. xi | Parameter | GHU-16 | GHU-17 | GHU-18 | GHU-19 | GHU-20 | |---|--|--|-------------------------|---|---| | Average Bankfull Width (m) | 3.96 | 5.48 | 7.38 | 6.05 | 6.61 | | Average Bankfull Depth (m) | 0.25 | 0.48 | 0.42 | 0.29 | 0.59 | | Bankfull Gradient (%) | 0.59 | 0.34 | 1.03 | 0.71 | 0.46 | | Bed Material D ₅₀ (m) | Silt | 0.0065 | 0.019 | 0.019 | 0.00013 | | Bed Material D ₈₄ (m) | 0.00010 | 0.078 | 0.10 | 0.057 | 0.014 | | Bedrock Exposure/Control | No | No | No | No | No | | Bank Materials | Si/cl/vfs | Si/cl/fs/ms | Si/cl/vfs/fs | Si/fs/ms/cs | Si/vfs/fs | | Manning's n at Bankfull | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | | Average Bankfull Velocity (ms-1) | 1.09 | 1.21 | 1.82 | 0.99 | 1.43 | | Average Bankfull Discharge (m³s-1) | 1.52 | 7.26 | 7.49 | 2.43 | 5.95 | | Flow competence (ms ⁻¹) @ D ₅₀ | | 0.47 | 0.76 | 0.76 | 0.078 | | Flow competence (ms-1) @ D ₈₄ | | 1.46 | 1.68 | 1.27 | 0.66 | | Tractive Force at Bankfull (Nm-2) | 20.23 | 25.13 | 61.23 | 22.45 | 28.51 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 12.45+ | 4.73 | 13.48 | 13.48 | 0.10 | | Critical Shear (Nm ⁻²) @ D ₈₄ | | 56.45 | 76.04 | 41.52 | 9.98 | | Bank Shear (Nm ⁻²) | | | | | 3.83* | | Stream Power (Wm ⁻¹) | 268.05 | 281.80 | 782.06 | 185.15 | 307.34 | | Stream Power per Unit Width (Wm-2) | 67.01 | 35.27 | 115.01 | 24.36 | 46.57 | | Critical Discharge (m³s-1) | 0.98 | 0.58 | 0.88 | 0.43 | 0.18 | | Critical Depth (m) | 0.22 | 0.20 | 0.22 | 0.20 | 0.08 | | Critical Velocity (ms-1) | 0.79 | 0.47 | 0.76 | 0.76 | 0.48 | | Site Description | - dry, channel,
low banks,
several large
slumps,
alternating
wide and
narrow
channel, banks
heavily
vegetated | - banks
slumping and
eroding,
upstream has a
backwater
effect, valley
wall contact,
well vegetated
banks | slumping
banks, land | - bankfull not
well defined,
dry channel,
erosion and
undercutting
bank, valley
wall contact,
large
boulders in
channel,
some
braiding | - valley wall
contact, woody
debris in channel,
straight section,
vertical, eroding
banks, some
floodplain access | | Method | Fischenich (2001) | Komar
(1987) | Komar
(1987) | Komar
(1987) | Chow
(1959) | ⁺ Cohesive alluvial silt PARISH Geomorphic Ltd. xii ^{*} Sandy clay | Parameter | GHU-21 | GHU-22 | GHU-23 | GHU-24 | GHU-25 | |---|--|--|-----------------|---|---| | Average Bankfull Width (m) | 14.79 | 2.79 | 10.54 | 7.71 | 8.68 | | Average Bankfull Depth (m) | 0.79 | 0.48 | 0.67 | 0.79 | 0.70 | | Bankfull Gradient (%) | 0.14 | 0.06 | 0.54 | 0.17 | 0.18 | | Bed Material D_{50} (m) | 0.0055 | 0.0033 | 0.00493 | 0.0024 | 0.0097 | | Bed Material D ₈₄ (m) | 0.0733 | 0.0055 | 0.072 | 0.0473 | 0.0629 | | Bedrock Exposure/Control | No | No | No | No | No | | Bank Materials | Cl/si/vfs | Si/vfs/cl/fs | Si/vfs/cl/fs | Cl/si/vfs | Cl/si/vfs | | Manning's n at Bankfull | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | | Average Bankfull Velocity (ms-1) | 0.92 | 0.43 | 1.61 | 1.01 | 0.96 | | Average Bankfull Discharge (m³s-¹) | 10.78 | 0.34 | 10.32 | 5.26 | 6.80 | | Flow competence (ms ⁻¹) @ D ₅₀ | 0.43 | 0.34 | 0.41 | 0.30 | 0.56 | | Flow competence (ms-1) @ D ₈₄ | 1.42 | 0.43 | 1.41 | 1.16 | 1.33 | | Tractive Force at Bankfull (Nm-2) | 10.91 | 2.88 | 35.46 | 13.19 | 12.47 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 4.01 | 2.40 | 3.59 | 1.75 | 7.07 | | Critical Shear (Nm ⁻²) @ D ₈₄ | 53.39 | 4.01 | 52.44 | 34.45 | 45.82 | | Bank Shear (Nm ⁻²) | | | | | | | Stream Power (Wm ⁻¹) | 153.79 | 3.53 | 560.63 | 92.67 | 122.62 | | Stream Power per Unit Width (Wm-2) | 10.39 | 2.20 | 58.40 | 14.04 | 12.23 | | Critical Discharge (m³s-¹) | 1.46 | 0.15 | 0.44 | 0.21 | 1.57 | | Critical Depth (m) | 0.30 | 0.15 | 0.14 | 0.15 | 0.33 | | Critical Velocity (ms ⁻¹) | 0.43 | 0.34 | 0.41 | 0.30 | 0.56 | | Site Description | -secondary
channel, both
banks eroding,
valley wall
contact, lots of
organics in
channel | - erosion and
slumping
banks, dense
grasses on both
banks, woody
debris
embedded in
channel, valley
wall contact | | - rip-rap along
bank, minor
wood debris in
channel,
leaning trees,
medial bar
present, roots
exposed | -mid-pool aggradation, both banks eroding, small point bar present, overburden failure and slumping banks, entrenched, major woody debris | | Method | Komar
(1987) | Komar
(1987) | Komar
(1987) | Komar
(1987) | Komar
(1987) | PARISH Geomorphic Ltd. xiii | Parameter | GHU-26 | GHU-27 | GHU-28 | GHU-29 | GHU-30 | |---|--|---|--|---|--| | Average Bankfull Width (m) | 3.99 | 14.56 | 7.97 | 15.30 | 5.78 | | Average Bankfull Depth (m) | 0.32 | 0.80 | 0.78 | 0.77 | 0.24 | | Bankfull Gradient (%) | 0.98 | 0.29 | 0.09 | 0.13 | 0.6 | | Bed Material D ₅₀ (m) | 0.00021 | 0.0185 | 0.00041 | 0.009 | 0.0000076 | | Bed Material D ₈₄ (m) | 0.032 | 0.080 | 0.034 | 0.056 | 0.0035 | | Bedrock Exposure/Control | No | No | No | No | No | | Bank Materials | Si/cl/fs/ms | Si/cl/vfs/cs | Si/fs/vfs | Cl/si/vfs | Si/cl/vfs/fs | | Manning's n at Bankfull | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | | Average Bankfull Velocity (ms-1) | 1.79 | 1.11 | 0.68 | 0.85 | 0.95 | | Average Bankfull Discharge (m³s-¹) | 2.87 | 12.40 | 4.17 | 9.16 | 1.17 | | Flow competence (ms ⁻¹) @ D ₅₀ | | 0.76 | | 0.54 | | | Flow competence (ms-1) @ D ₈₄ | 0.97 | 1.48 | 1.00 | 1.25 | 0.35 | | Tractive Force at Bankfull (Nm-2) | 48.27 | 17.45 | 6.27 | 9.55 | 16.53 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 3.83* | 13.48 | 3.83* | 6.56 | 4.79 + | | Critical Shear (Nm ⁻²) @ D ₈₄ | 23.16 | 58.05 | 24.77 | 40.43 | | | Bank Shear (Nm ⁻²) | | | | | | | Stream Power (Wm ⁻¹) | 340.93 | 347.61 | 45.85 | 273.08 | 247.09 | | Stream Power per Unit Width (Wm ⁻²) | 106.54 | 19.10 | 5.33 | 18.96 | 56.16 | | Critical Discharge (m³s⁻¹) | 0.02 | 4.49 | 1.40 | 2.34 | 0.10 | | Critical Depth (m) | 0.04 | 0.39 | 0.43 | 0.37 | 0.08 | | Critical Velocity (ms-1) | 0.26 | 0.76 | 0.59 | 0.54 | 0.76 | | | -dry channel,
aggradation,
eroding banks,
confined
channel, valley
wall contact,
medial
deposits, some
braiding, fallen
trees | - bank erosion,
woody debris
near bank, bar
formation, tree
roots exposed | - iron stains
by bank,
bank erosion
and
slumping, ,
wood debris
in channel,
down-cutting
in pool,
medial bar,
entrenched,
exposed clay
subpavement | -bank
erosion,
floodplain
access, wood
debris, mid
channel bar,
undercutting,
valley wall
contact | - vegetation in
channel, dry
channel, major
wood debris,
floodplain
access, bank
erosion | | Method | Chow
(1959) | Komar
(1987) | Chow
(1959) | Komar
(1987) | Chow (1959) | ^{*} Loose sandy clay PARISH Geomorphic Ltd. xiv ⁺ Cohesive clay | Parameter | GHU-31 | GHU-32 | GHU-33 | GHU-34 | GHU-35 | |---
--|---|--|---|---| | Average Bankfull Width (m) | 3.20 | 2.37 | 14.88 | 9.22 | 8.12 | | Average Bankfull Depth (m) | 0.28 | 0.42 | 0.83 | 0.64 | 0.59 | | Bankfull Gradient (%) | 0.25 | 0.36 | 0.070 | 0.43 | 0.78 | | Bed Material D ₅₀ (m) | Clay | 0.0000062 | 0.0142 | 0.0011 | 0.0077 | | Bed Material D ₈₄ (m) | 0.0000071 | 0.000045 | 0.10 | 0.025 | 0.12 | | Bedrock Exposure/Control | No | No | No | No | No | | Bank Materials | Cl/si | Cl/si/vfs | Cl/si/vfs/fs | Si/cl/vfs | Cl/si/vfs/fs | | Manning's n at Bankfull | 0.035 | 0.035 | 0.035 | 0.035 | 0.035 | | Average Bankfull Velocity (ms-1) | 0.56 | 0.98 | 0.65 | 1.38 | 54.98 | | Average Bankfull Discharge (m³s-¹) | 0.35 | 0.84 | 6.20 | 6.84 | 2.21 | | Flow competence (ms ⁻¹) @ D ₅₀ | | | 0.67 | 0.21 | 0.51 | | Flow competence (ms ⁻¹) @ D ₈₄ | | 0.047 | 1.64 | 0.87 | 1.81 | | Tractive Force at Bankfull (Nm ⁻²) | 6.06 | 15.20 | 5.47 | 26.74 | 43686.58 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 12.45 | 3.83+ | 10.34 | 0.80 | 5.61 | | Critical Shear (Nm ⁻²) @ D ₈₄ | | | 72.55 | 18.36 | 90.17 | | Bank Shear (Nm ⁻²) | | | | | | | Stream Power (Wm ⁻¹) | 34.14 | 96.59 | 40.61 | 155.32 | 1456.82 | | Stream Power per Unit Width (Wm ⁻²) | 13.66 | 48.29 | 3.38 | 19.91 | 20811.66 | | • | | 0.62 | | | | | Critical Discharge (m³s-¹) | 0.78* | | 5.54 | 0.072 | 0.40 | | Critical Depth (m) | 0.51 | 0.11 | 0.86 | 0.050 | 0.13 | | Critical Velocity (ms-1) | 0.71 | 1.04 | 0.67 | 0.21 | 0.51 | | Site Description | -dry channel,
deep valley,
fine substrate,
vegetated
banks,
floodplain
access, minor
bank erosion,
tree roots
exposed | -sinuous, "U"
shaped
channel, steep
eroding banks,
exposed roots,
woody debris
in channel | - uneven
eroding
banks, sands
embedding
course
materials,
valley wall
contact,
exposed clay
subpavement | -eroding
banks, tree
roots
exposed,
wood debris
in channel,
floodplain
access,
organics in
channel, mid
channel bar | - leaning tees
on with
exposed roots,
eroded banks
large rocks in
channel, foam
noticed, some
bank
undercutting | | Method + Cohesive | Fischenich
(2001) | Chow
(1959) | Komar
(1987) | Komar
(1987) | Komar
(1987) | ⁺ Cohesive PARISH Geomorphic Ltd. xv ^{*} based on bankfull channel geometry does not account for floodplain **Table 5.** Mimico Creek erosion thresholds. | Parameter | GMI-1 | GMI-2 | GMI-3 | GMI-4 | GMI-5 | |---|---|--|--|---|--| | Average Bankfull Width (m) | 14.33 | 14.37 | 10.37 | 8.01 | 8.13 | | Average Bankfull Depth (m) | 0.72 | 0.73 | 0.70 | 0.73 | 0.70 | | Bankfull Gradient (%) | 0.68 | 0.49 | 0.18 | 0.09* | 0.13 | | Bed Material D ₅₀ (m) | 0.031 | 0.032 | 0.050 | 0.014 | 0.012 | | Bed Material D ₈₄ (m) | 0.19 | 0.19 | 0.13 | 0.084 | 0.071 | | Bedrock Exposure/Control | Yes | No | No | No | No | | Bank Materials | Cl/vfs/fs | Si/vfs/fs/cl | Cl/si/vfs/fs | Si/cl/vfs/fs | Si/cl/vfs | | Manning's n at Bankfull | 0.035 | 0.035 | 0.035 | 0.040 | 0.040 | | Average Bankfull Velocity (ms-1) | 1.99 | 2.45 | 0.84 | 0.57 | 0.74 | | Average Bankfull Discharge (m³s-¹) | 16.18 | 49.70 | 6.62 | 3.08 | 3.24 | | Flow competence (ms ⁻¹) @ D ₅₀ | 0.95 | 0.97 | 1.19 | 0.66 | 0.61 | | Flow competence (ms-1) @ D ₈₄ | 2.19 | 2.21 | 1.84 | 1.51 | 1.41 | | Tractive Force at Bankfull (Nm ⁻²) | 51.70 | 65.07 | 12.50 | 5.88 | 7.76 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 22.29 | 23.24 | 36.27 | 10.12 | 8.52 | | Critical Shear (Nm ⁻²) @ D ₈₄ | 135.63 | 138.32 | 92.87 | 60.82 | 51.79 | | Bank Shear (Nm ⁻²) | | | | 3.59 | | | Stream Power (Wm ⁻¹) | 836.15 | 1974.87 | 116.06 | 92.18 | 112.96 | | Stream Power per Unit Width (Wm ⁻²) | 79.63 | 134.34 | 10.46 | 11.48 | 15.69 | | Critical Discharge (m³s-1) | 1.01 | 2.65 | 9.30 | 2.05 | 1.70 | | Critical Depth (m) | 0.25 | 0.34 | 0.94 | 0.54 | 0.48 | | Critical Velocity (ms-1) | 0.52 | 0.60 | 1.05 | 0.54 | 0.62 | | Site Description | gabion banks,
knickpoint
riffles, | - Weir, concrete
outfall,
clay till bed
exposed; gabion
bank protection;
armour stones,
valley wall
erosion, major
wood debris in
channel, bank
erosion and
slumping visible,
deposits present | - Gabions and
large stones used
for bank
stabilization,
minor bank
erosion,
bullrushes in
channel,
coarse deposition
visible in reach | old gabions,
major bank
erosion
thoughout site,
bullrushes in
channel, woody | - Eroded
valley wall,
major bank
erosion,
rip-rap
banks in
some
sections,
willow
roots
visible | | Method | Fischenich
(2001) | Fischenich
(2001) | Fischenich
(2001) | Komar
(1987) | Komar
(1987) | ^{*} Apparent backwater effects PARISH Geomorphic Ltd. xvi **Table 6.** Rouge River erosion thresholds. | Parameter | R-2 | R-4 | R-5 | R-7 | |---|---|---|--|---| | Average Bankfull Width (m) | 3.74 | 2.78 | 3.49 | 6.42 | | Average Bankfull Depth (m) | 0.69 | 0.38 | 0.48 | 0.62 | | Bankfull Gradient (%) | 0.15 | 0.83 | 0.40 | 0.47 | | Bed Material D ₅₀ (m) | 0.0056 | 0.0059 | 0.0087 | 0.0017 | | Bed Material D ₈₄ (m) | 0.026 | 0.086 | 0.084 | 0.082 | | Bedrock Exposure/Control | No | No | No | No | | Bank Materials | Vfs/fs/si | Vfs/fs/si | Si/vfs/fs | Si/vfs/fs | | Manning's n at Bankfull | 0.035 | 0.035 | 0.035 | 0.035 | | Average Bankfull Velocity (ms-1) | 0.62 | 1.65 | 1.29 | 1.50 | | Average Bankfull Discharge (m³s-¹) | 2.51 | 2.09 | 2.04 | 5.84 | | Flow competence (ms-1) @ D ₅₀ | 0.44 | 0.45 | 0.53 | 0.25 | | Flow competence (ms ⁻¹) @ D ₈₄ | 0.88 | 1.54 | 1.52 | 1.50 | | Tractive Force at Bankfull (Nm-2) | 10.48 | 41.23 | 23.76 | 30.93 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 4.08 | 4.30 | 6.34 | 1.21 | | Critical Shear (Nm ⁻²) @ D ₈₄ | 18.27 | 62.86 | 61.18 | 59.87 | | Bank Shear (Nm ⁻²) | | | | | | Stream Power (Wm ⁻¹) | 49.00 | 159.44 | 77.35 | 156.26 | | Stream Power per Unit Width (Wm ⁻²) | 12.25 | 63.77 | 29.75 | 26.94 | | Critical Discharge (m³s-¹) | 0.30 | 0.08 | 0.24 | 0.08 | | Critical Depth (m) | 0.20 | 0.13 | 0.22 | 0.10 | | Critical Velocity (ms-1) | 0.45 | 0.44 | 0.53 | 0.26 | | Site Description | - Log crib wall
and stones used
for bank
stabilization,
undercut and
slumped banks,
turbid water,
man-made riffles | - Dense
vegetation on
banks, minor
bank erosion,
small man-made
crossing | - Chutes present,
erosion and
slumping banks | - Exposed clay
subpavement,
slumped banks,
minor bank
erosion | | Method | Komar
(1987) | Komar
(1987) | Komar
(1987) | Komar
(1987) | PARISH Geomorphic Ltd. xvii | Parameter | R-10 | R-11 | R-12 | |--|---|-------------------------------|----------------------------------| | Average Bankfull Width (m) | 5.64 | 4.26 | 5.22 | | Average Bankfull Depth (m) | 0.51 | 0.48 | 0.71 | | Bankfull Gradient (%) | 0.58 | 0.62 | 0.23 | | Bed Material D ₅₀ (m) | 0.015 | 0.025 | 0.0072 | | Bed Material D ₈₄ (m) | 0.096 | 0.10 | 0.057 | | Bedrock Exposure/Control | No | No | No | | Bank Materials | Si/cl/vfs/fs | Cl/si/vfs/fs | Cl/vfs/fs | | Manning's n at Bankfull | 0.040 | 0.035 | 0.035 | | Average Bankfull Velocity (ms-1) | 1.10 | 1.27 | 0.99 | | Average Bankfull Discharge (m³s-1) | 2.69 | 2.38 | 2.46 | | Flow competence (ms-1) @ D ₅₀ | 0.69 | 0.87 | 0.49 | | Flow competence (ms-1) @ D ₈₄ | 1.61 | 1.66 | 1.27 | | Tractive Force at Bankfull (Nm-2) | 24.90 | 25.84 | 13.94 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 11.14 | 18.06 | 5.24 | | Critical Shear (Nm ⁻²) @ D ₈₄ | 69.71 | 74.88 | 41.81 | | Bank Shear (Nm ⁻²) | | | | | Stream Power (Wm ⁻¹) | 108.42 | 123.46 | 59.95 | | Stream Power per Unit Width (Wm ⁻²) | 19.36 | 28.06 | 14.99 | | Critical Discharge (m³s⁻¹) | 0.76 | 0.95 | 0.32 | | Critical Depth (m) | 0.26 | 0.33 | 0.24 | | Critical Velocity (ms-1) | 0.70 | 0.87 | 0.49 | | Site Description | - Exposed clay subpavement, | - Undercut and slumped banks, | - Major willow roots in channel, | | | island present, | high flow channel | minor bed | | | bank erosion,
woody debris in
channel | present | morphology,
forested area | | Method | Komar
(1987) | Komar
(2001) |
Komar
(1987) | PARISH Geomorphic Ltd. xviii | Parameter | R-13 | R-14 | R-16 | R-17 | |---|---|---|--|---| | Average Bankfull Width (m) | 2.81 | 6.86 | 4.21 | 5.66 | | Average Bankfull Depth (m) | 0.28 | 0.42 | 0.47 | 0.55 | | Bankfull Gradient (%) | 0.73 | 0.20 | 0.19 | 0.41 | | Bed Material D ₅₀ (m) | 0.0032 | 0.000064 | 0.0023 | 0.0059 | | Bed Material D ₈₄ (m) | 0.015 | 0.003 | 0.029 | 0.063 | | Bedrock Exposure/Control | No | No | No | No | | Bank Materials | Cl/si/vfs/fs | Si/fs/vfs | Cl/si/vfs | Si/vfs/fs | | Manning's n at Bankfull | 0.040 | 0.035 | 0.035 | 0.035 | | Average Bankfull Velocity (ms-1) | 0.88 | 0.73 | 0.72 | 1.25 | | Average Bankfull Discharge (m³s-¹) | 0.80 | 1.63 | 1.23 | 3.81 | | Flow competence (ms ⁻¹) @ D ₅₀ | 0.34 | | 0.29 | 0.45 | | Flow competence (ms-1) @ D ₈₄ | 0.69 | 0.11 | 0.93 | 1.33 | | Tractive Force at Bankfull (Nm-2) | 19.04 | 8.44 | 8.18 | 22.71 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 2.33 | 2.40* | 1.68 | 4.27 | | Critical Shear (Nm ⁻²) @ D ₈₄ | 11.07 | | 21.12 | 45.82 | | Bank Shear (Nm ⁻²) | | | | | | Stream Power (Wm ⁻¹) | 91.98 | 148.52 | 50.19 | 160.05 | | Stream Power per Unit Width (Wm ⁻²) | 27.05 | 28.56 | 13.00 | 29.64 | | Critical Discharge (m³s-¹) | 0.041 | 0.14 | 0.11 | 0.27 | | Critical Depth (m) | 0.050 | 0.12 | 0.96 | 0.16 | | Critical Velocity (ms ⁻¹) | 0.34 | 0.37 | 0.29 | 0.45 | | Site Description | - Many gravel deposits, moderate toe erosion, woody debris jam, riparian vegetation mowed to edge of bank | - Very low bank, accessible to floodplain, valley wall erosion, no bed morphology, sand substrate, woody debris in channel, floodplain has high water content | - Large amounts
of organic
material on bed,
minor bank
slumping and
erosion,
dense grasses
and herbs on
both banks | - Macrophytes in
channel,
slumped and
undercut banks,
vegetated island,
golf course
surrounds site,
banks comprised
of clay | | Method | Komar
(1987) | Chow (1959) | Komar
(1987) | Komar
(1987) | ^{*} Loose sandy clay PARISH Geomorphic Ltd. xix | Parameter | R-21 | R-24 | R-25 | R-26 | R-27 | |---|---|---|--|--|---| | Average Bankfull Width (m) | 15.65 | 8.07 | 16.69 | 15.54 | 16.43 | | Average Bankfull Depth (m) | 1.09 | 0.49 | 0.90 | 0.72 | 0.71 | | Bankfull Gradient (%) | 0.020 | 0.37 | 0.23 | 0.47 | 0.85 | | Bed Material D ₅₀ (m) | 0.0061 | 0.0057 | 0.019 | 0.062 | 0.069 | | Bed Material D ₈₄ (m) | 0.12 | 0.047 | 0.088 | 0.16 | 0.24 | | Bedrock Exposure/Control | No | No | No | No | No | | Bank Materials | Si/vfs/cl/fs | Si/vfs/cl/fs | Si/fs/cl/ms | Si/vfs/fs/cl | Si/vfs/fs/cl | | Manning's n at Bankfull | 0.035 | 0.040 | 0.035 | 0.035 | 0.040 | | Average Bankfull Velocity (ms-1) | 0.44 | 1.16 | 1.40 | 1.48 | 1.85 | | Average Bankfull Discharge (m³s-¹) | 8.42 | 4.22 | 19.75 | 14.95 | 22.12 | | Flow competence (ms ⁻¹) @ D ₅₀ | 0.45 | 0.44 | 0.76 | 1.32 | 1.39 | | Flow competence (ms-1) @ D ₈₄ | 1.79 | 1.16 | 1.55 | 2.04 | 2.48 | | Tractive Force at Bankfull (Nm-2) | 2.26 | 24.33 | 23.39 | 30.14 | 59.87 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 4.44 | 4.15 | 13.55 | 45.09 | 50.55 | | Critical Shear (Nm ⁻²) @ D ₈₄ | 87.70 | 34.31 | 64.39 | 116.03 | 178.09 | | Bank Shear (Nm ⁻²) | | | | 12.45* | | | Stream Power (Wm ⁻¹) | 15.59 | 200.66 | 402.73 | 463.10 | 1445.18 | | Stream Power per Unit Width (Wm-2) | 0.94 | 37.16 | 29.68 | 29.88 | 86.69 | | Critical Discharge (m³s-1) | 6.66 | 0.29 | 3.77 | 7.21 | 13.39 | | Critical Depth (m) | 1.22 | 0.15 | 0.47 | 1.02 | 0.68 | | Critical Velocity (ms ⁻¹) | 0.45 | 0.44 | 0.76 | 0.55 | 1.38 | | Site Description | protection,
no bed
morphology,
minor erosion | - Major woody
debris in
channel,
bank erosion
throughout the
site, garbage on
top of banks
and in the
channel | eroded banks,
island present,
clay bed
exposed, | protection,
clay
subpavement
exposed,
fresh deposits,
island present,
moderate bank
erosion | - Large boulders
in channel,
boulders
embedded in
banks, banks
composed of
hard clay, | | Method | Komar
(1987) | Komar
(1987) | Komar
(1987) | Fischenich
(2001) | Komar
(1987) | ^{*} alluvial silt and clay PARISH Geomorphic Ltd. xx | Parameter | R-32 | R-33 | R-37 | R-38 | |--|--|---|---|--| | Average Bankfull Width (m) | 4.61 | 8.76 | 7.89 | 10.81 | | Average Bankfull Depth (m) | 0.27 | 0.55 | 0.58 | 0.62 | | Bankfull Gradient (%) | 0.021 | 0.45 | 0.15 | 0.050 | | Bed Material D_{50} (m) | 0.000044 | 0.0074 | 0.019 | 0.0058 | | Bed Material D ₈₄ (m) | 0.0057 | 0.050 | 0.058 | 0.048 | | Bedrock Exposure/Control | No | No | No | No | | Bank Materials | Cl/si/vfs/fs | Cl/vfs/ms | Si/vfs/cl/fs | Cl/si/vfs/fs | | Manning's n at Bankfull | 0.045 | 0.035 | 0.035 | 0.035 | | Average Bankfull Velocity (ms-1) | 0.16 | 1.30 | 0.90 | 0.42 | | Average Bankfull Discharge (m³s-1) | 0.26 | 6.91 | 6.41 | 1.79 | | Flow competence (ms-1) @ D ₅₀ | | 0.50 | 0.77 | 0.44 | | Flow competence (ms-1) @ D ₈₄ | 0.44 | 1.20 | 1.28 | 1.17 | | Tractive Force at Bankfull (Nm-2) | 0.70 | 24.52 | 10.87 | 2.60 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 3.59+ | 5.39 | 13.84 | 4.22 | | Critical Shear (Nm ⁻²) @ D ₈₄ | | 36.64 | 41.96 | 34.60 | | Bank Shear (Nm ⁻²) | | | | | | Stream Power (Wm ⁻¹) | 1.18 | 337.94 | 242.33 | 49.75 | | Stream Power per Unit Width (Wm ⁻²) | 0.25 | 35.20 | 25.24 | 6.14 | | Critical Discharge (m³s-¹) | 5.54* | 0.65 | 3.56 | 1.75* | | Critical Depth (m) | 1.74 | 0.16 | 0.53 | 0.50 | | Critical Velocity (ms ⁻¹) | 0.47 | 0.50 | 0.77 | 0.44 | | Site Description | - Straightened | - Woody debris | - Exposed clay | - Exposed clay | | | channel,
dense grasses
on banks and
in channel, | in channel,
moderate bank
erosion,
valley wall | bed,
aggradation,
vegetation in
channel, | subpavement,
valley wall erosion,
macrophytes in
channel, | | | silty substrate, | present, | erosion and | slumped and eroded | | | agricultural field surrounds | tree roots
exposed | slumping of
banks visible | banks | | | reach | спрозец | throughout site | | | Method | Chow
(1959) | Komar
(1987) | Komar
(1987) | Komar
(1987) | PARISH Geomorphic Ltd. xxi ⁺ clayey sand loose * based on bankfull channel geometry does not account for floodplain | Parameter | R-39 | |---|---| | Average Bankfull Width (m) | 3.09 | | Average Bankfull Depth (m) | 0.21 | | Bankfull Gradient (%) | 0.65 | | Bed Material D ₅₀ (m) | 0.0054 | | Bed Material D ₈₄ (m) | 0.031 | | Bedrock Exposure/Control | No | | Bank Materials | Cl/si/vfs/fs, | | Manning's n at Bankfull | 0.035 | | Average Bankfull Velocity (ms-1) | 1.05 | | Average Bankfull Discharge (m³s-1) | 0.74 | | Flow competence (ms $^{-1}$) @ D $_{50}$ | 0.43 | | Flow competence (ms ⁻¹) @ D ₈₄ | 0.95 | | Tractive Force at Bankfull (Nm-2) | 19.50 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 3.93 | | Critical Shear (Nm ⁻²) @ D ₈₄ | 22.29 | | Bank Shear (Nm-2) | | | Stream Power (Wm ⁻¹) | 55.89 | | Stream Power per Unit Width (Wm ⁻²) | 24.30 | | Critical Discharge (m³s-¹) | 0.044 | | Critical Depth (m) | 0.090 | | Critical Velocity (ms ⁻¹) | 0.43 | | Site Description | - Major root mass in
channel, | | | vegetation in channel,
minor erosion
throughout the site, | | | no bed morphology | | Method | Komar
(1987) | PARISH Geomorphic Ltd. xxii | Parameter | R-45 | R-47 | R-51 | R-52 | R53 | |--|---|--|---|---|---| | Average Bankfull Width (m) | 13.43 | 10.86 | 13.39 | 18.12 | 16.78 | | Average Bankfull Depth (m) | 0.60 | 0.59 | 0.60 | 0.55 | 0.70 | | Bankfull Gradient (%) | 0.33 | 0.43 | 0.81 | 1.04 | 0.42 | | Bed Material D ₅₀ (m) | 0.071 | 0.082 | 0.056 | 0.063 | 0.052 | | Bed Material D ₈₄ (m) | 0.14 | 0.18 | 0.17 | 0.18 | 0.17 | | Bedrock Exposure/Control | No | No | No | No | No | | Bank Materials | Si/vfs/fs | Fs/vfs/si | Si/vfs/fs |
Si/fs/ms | Si/vfs/fs/cl | | Manning's n at Bankfull | 0.040 | 0.035 | 0.035 | 0.035 | 0.035 | | Average Bankfull Velocity (ms-1) | 1.01 | 1.45 | 2.10 | 1.92 | 1.43 | | Average Bankfull Discharge (m³s-¹) | 6.41 | 11.02 | 15.76 | 19.64 | 16.03 | | Flow competence (ms-1) @ D ₅₀ | 1.40 | 1.50 | 1.26 | 1.33 | 1.22 | | Flow competence (ms-1) @ D ₈₄ | 1.93 | 2.14 | 2.12 | 2.18 | 2.09 | | Tractive Force at Bankfull (Nm-2) | 19.05 | 28.67 | 58.23 | 54.78 | 27.98 | | Critical Shear (Nm ⁻²) @ D ₅₀ | 51.57 | 59.80 | 41.08 | 45.96 | 37.95 | | Critical Shear (Nm ⁻²) @ D ₈₄ | 102.99 | 129.29 | 126.96 | 134.17 | 123.32 | | Bank Shear (Nm ⁻²) | 18.20* | 18.20* | 18.20* | 18.20* | 18.20* | | Stream Power (Wm ⁻¹) | 192.43 | 357.20 | 490.50 | 780.84 | 516.19 | | Stream Power per Unit Width (Wm ⁻²) | 17.82 | 31.89 | 48.09 | 41.10 | 31.28 | | Critical Discharge (m³s-¹) | 5.63 | 3.62 | 1.89 | 1.32 | 2.82 | | Critical Depth (m) | 0.66 | 0.51 | 0.33 | 0.24 | 0.54 | | Critical Velocity (ms-1) | 1.03 | 0.86 | 0.80 | 0.61 | 0.95 | | Site Description | - Island present, major WD in channel, lots of tree root exposure, major erosion throughout channel | - Minor
erosion,
large boulders
in channel,
boulders and
cobbles
embedded at
toe of banks | - Exposed clay
bed, rip-rap left
bank, path on
top of bank,
right bank
eroded along
entire site | - Valley wall
erosion, path
area eroding
out,
large deposits
present,
large boulders
in stream | - Large boulders in channel, both banks eroded, valley wall contact, exposed clay sub-pavement, island, willow shrubs on left bank, deposition, siltation | | Method | Fischenich
(2001) | Fischenich
(2001) | Fischenich
(2001) | Fischenich
(2001) | Fischenich
(2001) | ^{*} mixed alluvium from clay to cobble or consolidated clay PARISH Geomorphic Ltd. xxiii **Appendix** B Figure 2. Geomorphic monitoring sites within Etobicoke and Mimico Watersheds (from TRCA Monitoring Program Report, 2001). PARISH Geomorphic Ltd. Figure 1. Geomorphic monitoring sites within the Humber River Watershed (from TRCA Monitoring Program Report, 2001). PARISH Geomorphic Ltd. Figure 1: Geomorphic Monitoring Sites within the Don River, Highland Creek and Rouge River Watershed from Regional Monitoring Program - Fluvial Geomorphology Component Etobicoke Creek, Mimico Creek and Humber River Watersheds (PARISH Geomorphic Ltd., June 26, 2002).